APPENDIX A - NRCS SOIL REPORT

United States Department of Agriculture

Natural
Resources
Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Laramie County, Wyoming, Western Part

Van Buren Corridor Study

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
Laramie County, Wyoming, Western Part 13
102—Altvan-Dix complex, 6 to 10 percent slopes 13
104-Ascalon loam, cool, 0 to 6 percent slopes 15
142-Manter sandy loam, 0 to 6 percent slopes 16
184—Urban land-Ascalon complex, 0 to 6 percent slopes. 17
187-Urban land-Merden complex, 0 to 3 percent slopes 19
189—Urban land-Poposhia-Trimad complex, 3 to 15 percent slopes 20
References 22

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
8. Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
- Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(8) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Laramie County, Wyoming, Western Part Survey Area Data: Version 15, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 2, 2022—Aug 8, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
102	Altvan-Dix complex, 6 to 10 percent slopes	0.1	0.1\%
104	Ascalon loam, cool, 0 to 6 percent slopes	33.1	29.4\%
142	Manter sandy loam, 0 to 6 percent slopes	7.4	6.6\%
184	Urban land-Ascalon complex, 0 to 6 percent slopes	34.5	30.6\%
187	Urban land-Merden complex, 0 to 3 percent slopes	2.2	2.0\%
189	Urban land-Poposhia-Trimad complex, 3 to 15 percent slopes	35.3	31.3\%
Totals for Area of Interest		112.6	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not
mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Laramie County, Wyoming, Western Part

102—Altvan-Dix complex, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2tlq8
Elevation: 4,800 to 6,330 feet
Mean annual precipitation: 13 to 19 inches
Mean annual air temperature: 45 to 50 degrees F
Frost-free period: 115 to 135 days
Farmland classification: Farmland of statewide importance, if irrigated

Map Unit Composition

Altvan and similar soils: 60 percent
Dix and similar soils: 30 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Altvan

Setting

Landform: Interfluves on alluvial fans
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Parent material: Loamy alluvium over tertiary aged sandy and gravelly alluvium

Typical profile

A - 0 to 9 inches: loam
Bt1-9 to 13 inches: sandy clay loam
Bt2 - 13 to 25 inches: sandy clay loam
Btk - 25 to 28 inches: sandy clay loam
2C - 28 to 80 inches: very gravelly sand
Properties and qualities
Slope: 6 to 8 percent
Depth to restrictive feature: 28 to 34 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.7 inches)
Interpretive groups
Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: C
Ecological site: R067AY122WY - Loamy (Ly)

Hydric soil rating: No

Description of Dix

Setting

Landform: Interfluves on alluvial fans
Landform position (two-dimensional): Shoulder, backslope
Landform position (three-dimensional): Nose slope, side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Linear, convex
Parent material: Tertiary aged sandy and gravelly alluvium

Typical profile

A - 0 to 10 inches: very gravelly sandy loam
C1-10 to 28 inches: very gravelly coarse sand
C2-28 to 80 inches: very gravelly coarse sand

Properties and qualities

Slope: 6 to 10 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.9 inches)
Interpretive groups
Land capability classification (irrigated): 7s
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Ecological site: R067AY112WY - Gravelly (Gr)
Hydric soil rating: No

Minor Components

Wages

Percent of map unit: 10 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No

104—Ascalon loam, cool, 0 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2tlp8
Elevation: 5,400 to 6,550 feet
Mean annual precipitation: 13 to 19 inches
Mean annual air temperature: 45 to 50 degrees F
Frost-free period: 115 to 135 days
Farmland classification: Farmland of statewide importance, if irrigated

Map Unit Composition

Ascalon, cool, and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon, Cool

Setting

Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Wind-reworked sandy alluvium

Typical profile

Ap-0 to 6 inches: loam
Bt1-6 to 12 inches: sandy clay loam
Bt2-12 to 19 inches: sandy clay loam
Bk - 19 to 35 inches: sandy clay loam
C-35 to 80 inches: loam
Properties and qualities
Slope: 0 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)
Interpretive groups
Land capability classification (irrigated): 3e

Custom Soil Resource Report

Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No

Minor Components

Altvan
Percent of map unit: 8 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No
\section*{Wages}
Percent of map unit: 7 percent
Landform: Interfluves
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No

142-Manter sandy loam, 0 to 6 percent slopes

Map Unit Setting

National map unit symbol: 3j68
Elevation: 5,000 to 6,500 feet
Mean annual precipitation: 15 to 17 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 115 to 125 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Manter and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Manter

Setting

Landform: Knolls, alluvial fans, terraces
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits and/or alluvium derived from sedimentary rock

Typical profile

A - 0 to 7 inches: sandy loam
Bt1-7 to 19 inches: loam
Bt2 - 19 to 23 inches: fine sandy loam
Ck-23 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R067AY150WY - Sandy (Sy)
Hydric soil rating: No

Minor Components

Ascalon

Percent of map unit: 8 percent
Ecological site: R067AY150WY - Sandy (Sy)
Hydric soil rating: No

Bayard

Percent of map unit: 7 percent
Ecological site: R067AY150WY - Sandy (Sy)
Hydric soil rating: No

184-Urban land-Ascalon complex, 0 to 6 percent slopes

Map Unit Setting

National map unit symbol: 3j7m
Elevation: 5,000 to 6,500 feet
Mean annual precipitation: 15 to 17 inches
Mean annual air temperature: 45 to 48 degrees F
Frost-free period: 115 to 125 days
Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 65 percent
Ascalon and similar soils: 25 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Fan remnants, alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sandstone

Typical profile

H1-0 to 8 inches: loam
H2-8 to 24 inches: sandy clay loam
H3-24 to 60 inches: loam

Properties and qualities

Slope: 0 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 10.3 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No

Minor Components

Altvan

Percent of map unit: 5 percent
Hydric soil rating: No

Wages

Percent of map unit: 5 percent
Hydric soil rating: No

187—Urban land-Merden complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3j7q
Elevation: 5,000 to 6,500 feet
Mean annual precipitation: 15 to 17 inches
Mean annual air temperature: 41 to 45 degrees F
Frost-free period: 90 to 115 days
Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 65 percent
Merden and similar soils: 30 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Merden

Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy alluvium derived from igneous, metamorphic and sedimentary rock

Typical profile

H1-0 to 12 inches: silty clay loam
H2-12 to 24 inches: silty clay loam
H3-24 to 60 inches: silty clay loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20
to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 6 to 24 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Calcium carbonate, maximum content: 8 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Slightly saline to moderately saline (4.0 to $8.0 \mathrm{mmhos} / \mathrm{cm}$)
Sodium adsorption ratio, maximum: 10.0
Available water supply, 0 to 60 inches: High (about 9.6 inches)
Interpretive groups
Land capability classification (irrigated): 4w
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: C/D
Ecological site: R067AY174WY - Subirrigated (Sb)

Hydric soil rating: Yes

Minor Components

Poorly drained loamy soils

Percent of map unit: 5 percent
Landform: Flood plains
Hydric soil rating: Yes

189—Urban land-Poposhia-Trimad complex, 3 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3j7s
Elevation: 6,500 to 7,500 feet
Mean annual precipitation: 15 to 17 inches
Mean annual air temperature: 41 to 45 degrees F
Frost-free period: 90 to 115 days
Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 60 percent
Poposhia and similar soils: 15 percent
Trimad and similar soils: 15 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Poposhia

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Alluvium derived from sandstone, siltstone and shale

Typical profile

H1-0 to 6 inches: silt loam
H2-6 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 10 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: R067AY122WY - Loamy (Ly)
Hydric soil rating: No

Description of Trimad

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Gravelly alluvium derived from igneous and sedimentary rock

Typical profile

H1-0 to 3 inches: loam
H2 - 3 to 10 inches: gravelly loam
H3-10 to 34 inches: very gravelly loam
H4-34 to 60 inches: very gravelly sandy loam

Properties and qualities

Slope: 6 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6s
Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: B
Ecological site: R067AY112WY - Gravelly (Gr)
Hydric soil rating: No

Minor Components

Piezon

Percent of map unit: 5 percent
Hydric soil rating: No

Rock outcrop

Percent of map unit: 5 percent
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B - SURVEY PLATS

\qquad

ENTITLED:	"A RESOLUTION AUTHORIZING THE MAYOR AND THE
	CITY CLERK TO SIGN A FINAL PLAT FOR DEL-VAN
	STORAGE PARK, BEING A REPLAT OF ALL OF
	GOODWATER ADDITION, GOODWATER DRIVE, AND
	WATER BLUE LANE AND A PORTION OF THE NORTHEAST
	QUARTER OF THE NORTHWEST QUARTER OF SECTION
	26, T.14N., R.66W., 6TH P.M., CHEYENNE, WYOMING
	(LOCATED SOUTH OF AND ADJACENT TO DELL RANGE
	BLVD., EAST OF AND ADJACENT TOVAN BUREN AVE.)."

WHEREAS, the owners of the property described herein have subdivided said land in accordance with the statutes in such cases made and provided; and

WHEREAS, the owners of the property described herein have caused a subdivision plat of said land to be made, acknowledged, and certified, particularly describing the lot, block, easements and right-of-way; and

WHEREAS, the above described subdivision plat has been presented to the City of Cheyenne Planning Commission for consideration and the Planning Commission has recommended that the Governing Body approve the subdivision plat; and

WHEREAS, the plat has been duly executed by the Development Office.
NOW, THEREFORE BE IT RESOLVED BY THE GOVERNING BODY OF THE CITY OF CHEYENNE, WYOMING, THAT the subdivision described as DelVan Storage Park, a replat of all of Goodwater Addition, Goodwater Drive, and Water Blue Lane and a portion of the $\mathrm{NE}^{1 / 4}$ of the NW $1 / 4$ of Section 26 , T.14N., R.66W., 6th P.M., Cheyenne, Wyoming, be and the same hereby is approved and confirmed as presented, and that the Mayor and the City Clerk be and are hereby authorized, empowered, and directed to execute said plat when Community Facility Fees are paid and after an executed copy of Del-Van Storage Park Annexation has been filed with the County Clerk and Ex-Officio Register of Deeds for Laramie County, Wyoming. If the final plat of Del-Van Storage Park is not acted on and recorded within 18 months of the date below, this approval shall be void in accordance with Section 2.1.3.c.5(a) of the UDC.

PRESENTED, READ AND ADOPTED THIS __ 22nd DAY OF

MA RESOLUTION AUTHORIZING THE MAYOR AND CITY CLERK OF THE CITY OF CHEYENNE TO EXECUTE IN BEHALF OF SAID CITY AN APPROVAL FOR FILING OF THE PLAT OF LAND SUBDIVISION OF TRACTS 303 AND 304 SUNNYSIDE ADDITION 7th FILTNG, LARAMIE COUNTY, WYOMING."

WHERRAS, Walter H. Land and Ida $\mathrm{E}_{\text {. I }}$ Land have heretofore offered to the City of Cheyenne, for its approval of the filing thereof, a certain plat entitled Land Subdivision of Tracts 303 and 304 Sunnyside Addition 7 th Filing, Laramie County, Wyoming; and

WHEREAS, Chapter 29, Section 1102, Wyoming Compiled Statutes, 1945, State of Wyoming, provides that plats of land adjacent to or within one mile of the boundaries of any incorporated city or town shall be jointly approved by both the Board of County Commissioners and the legislative body of such city or town before such plat shall be filed and recorded in the office of the County Clerk; and

WHERRAS, no good reason appears to the Council why the plat aforesaid should not be filed for record with the County Clerk, it being understood that the same does not constitute an addition to the City of Cheyenne, nor in any manner obligate the said City to improve or maintain said subdivision or any part thereof;

NOW, THEREFORE, BE IT RESOLVED BY THE COUNCIL OF THE CITY OF CHEYENNE:
That the City does approve for filing in the office of the County Clerk and Exmofficio of Deeds of Laramie County, Wyoming, the plat heretofore referred to as Land Subdivision of Tracts 303 and 304 Sunnyside Addition Fth Filing acknowledged and subscribed by Walter H. Land and Ida E. Land; and that the Mayor and City Clerk be, and they hereby are, authorized and empowered to execute on such plat the written approval of said City, for the purpose of entitling the same to record.

(SEAL)
ATTEST:

\qquad 5732

ENTITLED: "A RESOLUTION AUTHORIZING A STREET NAME CHANGE FROM MONROE AVENUE TO FRANK COURT FOR THE PORTION OF THE STREET LOCATED NORTH OF ROCK SPRINGS STREET AND ORIGINALLY PLATTED WITH SUNNYSIDE ADDITION, $7^{\text {TH }}$ FILING, CITY OF CHEYENNE, LARAMIE COUNTY, WYOMING."

WHEREAS, a plat has been submitted, Dry Creek Business Park, which proposes creating a new segment of Monroe Avenue; and

WHEREAS, the new segment of Monroe Avenue is a logical extension of the segment of Monroe Avenue platted in 1993 in Swartz Subdivision; and

WHEREAS, having parallel streets with the same name is generally undesirable and confusing; and

WHEREAS, the only structure potentially affected by this change is currently addressed on Frank Court;

NOW, THEREFORE BE IT RESOLVED BY THE GOVERNING BODY OF THE CITY OF CHEYENNE, WYOMING, THAT the requested street name change from Monroe Avenue to Frank Court for the portion of the street located north of Rock Springs Street and originally platted with Sunnyside Addition, $7^{\text {th }}$ Filing, is hereby approved and the City Engineer or his designated representative is directed to change the City of Cheyenne Official Map.

PRESENTED, READ AND ADOPTED THIS _14th_ _DAY OF

December , 2015.

RYEGARD L. KAYSEN, MAYOR
(SEAL)
ATTEST:

Carol sinteferfer
CAROL INTLEKOFER,CITY CLERK

Wyoming Certified Land Corner Recordation Certificate

This form is to be completed in accondance with W.S. 36-11-101, primuted in wack ink or typed, and shall be for owe individual cormer.

Describe below, or show in sketch attached to this form, the corner evidence found. Include condition and type of monument. accessories and ties. Describe any maintenance or rehabilitation performed. In the circle to the right, show monument inscription. If monument is determined lost or obliterated, restate the GLO or BLM original field note record: describe or show the procedure used to reestablish the corner and all data as above for a found monument.

Field Date 27 Dx 91 Office Reference 2245 EVIDENCE FOUND: $1 / 2^{\prime 2}$ Irow pips.

GLO RECORD: Hons
HTERMOUNTAIN

MONUMENT SET: $3^{\prime \prime}$ ahom survkap stampsed PLS 5910 on $42^{\prime \prime} 2 \mathrm{~km}$. drivable $4 / 4^{\prime \prime} \mathrm{rod}$.

REFERENCE POINTS SET: Sit $2 p_{i}^{k}$. wails wo/ washers, (5s2 skstets)

This Certified Land Comer Recordation Centificate was filed for record on the \qquad day of 19 , in Book No. T 14 W , R 66W , on Alpha-Numeric coordinates
\qquad -R-17 and was noted on the Cross Index Plat.

County Clerk

Corner Type:
\boxtimes Aliquor CorneOther
Cormer Name \qquad Sxction Gornir Section(s) $22,23,27,26$ \qquad Township 14ω Sheet 1 of 1

Directions for using the

 Cross Index PlatSection. quarter and sixteenth comers will be marked with a dot at the comer location. The ulpha-numeric cocordinate number is then determined for the intersection of the two lines. A comer that applies to two or more townships shall be filed under all that apply by the use of photo copies.

Closing comers will be indexed under the township in which they control ownership. For $1 / 64$. 1/256, $1 / 1024$ and non-aliquot comers lying belwern grid designations, mark the appropriate grid area with adot and use the index code to the north and west (local systems nay be usied if the method is approved by the County Surveyor or Clerk and a written description of is use is filed in the front of each book of certificales).

Cross Index Plat

State Plane Coordinates (optional)

Zone $\begin{array}{r}\text { W } \\ \square \text { NAD } 1927\end{array}$	wC EC E NGVD 1929	feet/meters \square NAD 1983	\square NAVD 1988
North (Y) $=$	East (X) =	$\underline{-}$	EL $=$
Latitude		Longitude	
Scule Factor		Geoid Height	

Certification

1. Teffrey B, Tonves Wyoming PLS- 5910 cenify
that I, or uthers under my supervision, have periormed the work as described above and completed this form.
Company or Agency
INTERMOUNTAIN PROFESSIONAL. SERVICES, INC.
Mailing Address
Sireet Address
City, State, ZIP
Telephone, FAX
1816 CENTRAL AVENUE

$$
\begin{aligned}
& \hline \text { CHEYENNE, WYOMING } 82001 \\
& \text { PH. 307-632-3138 FAX 307-632-3194 }
\end{aligned}
$$

Wyoming Certified Land Corner Recordation Certificate

This form is to be completed in accordance with W.S. 36-11-101, primed in black ink or typed, and shall be for ane individual corner.
Describe below, or show in sketch attached to this form, the comer evidence found. Include condition and type of monument. accessories and ties. Describe any maintenance or rehabilitation performed. In the circle to the right, show monument inscription. If monument is determined lost or obliterated. restate the GLO or BLM original field note record; describe or show the procedure used to reestablish the comer and all data as above for a found monument.
Field Date 27 Doc. 91 Office Reference 2245

EVIDENCE FOUND: $1 / 2^{\prime \prime}$ Iron pipe.

GLO RECORD: NONE

MONUMENT SET: $3^{\prime \prime}$ Alum. Surv kay stamped PLS 5910 on $42^{\prime \prime}$ alum. drivable $3 / 4^{\prime \prime} \mathrm{rad}$. Cap: rod set inside monument box

REFERENCE POINTS SET: 1 pk. wail w/ washer in South power pole.

LOCATION SKETCH

Office of County Clerk
County of \qquad
This Certified Land Comer Recordation Certificate was filed for record on the day of
\qquad , 19 \qquad in Book No. T $14 n$, R 66W on Alpha-Numeric coordinates R-19 and was noted on the Cross Index Plat.

Directions for using the

 Cross Index PlatSection. quarter and sixteenth comers will be marked with a dot at the comer location. The alphu-numeric coordinate number is then deternined for the intersection of the two lines. A corner that applies to two or more townships shall be lited under all that apply by the use of photo copies.

Closing comers will be indexed under the township in which they control ownership. For $1 / 64$. 1/256. 1/1024 and non-aliquot comers lying between grid designations, mark the appropriate grid area with a dot and use the index code to the north and west (local systems may be used if the method is approved by the County Surveyor or Clerk and a written description of th use is filed in the front of each book of centificates).

Cross Index Plat

State Plane Coordinates (optional)

$\operatorname{North}(\mathbf{Y})=$
East $(X)=$ \qquad $\mathbf{E L}=$ \qquad
Latitude \qquad Longitude \qquad
Scale Factor \qquad Geoid Height \qquad

Certification

1. Seffrey A Sourcs

Company or Agency INTERMOUNTAIN PROFESSIONAL SERVICES, INC.
Mailing Address
1816 CENTRAL AVENUE

CHEYENNE, WYOMING 82001
PH. 307-632-3138 FAX 307-632-3194
City, State, ZIP
Telephone, FAX

Sheel 1 of 1

State of Wyoming Corner Record

(In compliance with the cornse perpstuafion and finve act, Wyoming Statutes, 1997 Section 33-29-140 et. seq., and the Rules and Regulations of the Board of Professional Engineers and Professional Land Surveyors)

Reverse side of this form may be used if more space is needed.

Record of original survey and citation of source of historical information (if comer is lost or obliterated). Description of comer monumentation evidence found and/or monument and accessories established to perpetuate the location of this comer. Sketch of relative location of monument, accessories, and reference points with course and distance to adjacent comer(s) (if determined in this survey). Method and rationale for reestablishment of lost or obliterated comer.

Firm/Agency, Address
Comerstone Surveying Company
2120 Dey Avenue
Cheyenne, Wyoming 82001

Telephone Number:
1-307-637-6958

State of Wyoming Corner Record

(In compliance with the CORNER PRRPSTUATION AND FILNG ACT, Wyoming Statutes, 1997 Section 33-29-140 et. seq., and the Rules and Regulations of the Board of Professional Engineers and Professional Land Surveyors)
Reverse side of this form may be used if more space is needed.

Record of original survey and citation of source of historical information (if corner is lost or obliterated). Description of comer monumentation evidence found and/or monument and accessories established to perpetuate the location of this comer. Sketch of relative location of monument, accessories, and reference points with course and distance to adjacent corner(s) (if determined in this survey). Method and rationale for reestablishment of lost or obliterated comer.

FOUND: Nothing
RECORD:"Iron Stake" - Sunnyside Addition, 6th Filing Plat

Monument location
Date of Field Work: April 1998
Office Reference: 9812

Cross Index Plat

Firm/Agency, Address
Cornerstone Surveying Company
2120 Dey Avenue 2120 Dey Avenue
Cheyenne, Wyoming 82001

This comer record was prepared by me or under my direction and supervision.

SEAL \& SICNATURE

```
Telephone Number: 1-307-637-6958
```


CERTIFIED LAND CORNER RECORDATION

DESCRIPTION OF CORNER EVIDENCE FOUND, AND ORIGINAL RECORD (If known)

DESCRIPTION OF MONUMENT AND ACCESSORIES ESTABLISHED

TO PERPETUATE THE ORIGINAL LOCATION OF THIS CORNER:

Location

Sec 27	Sec 26
Sec 34	Sec 35

Set a $3 / 8^{\prime \prime}$ rebar flush with the asphalt from
ties to corner platted in Sunny Side 5 th Filing.

Township 14 N Range 66 W
6th P. M.
SKETCH, WITH COURSE AND DISTANCE TO ADJACENT CORNER IF DETERMINED IN THIS SURVEY.
(May Sketch or Paste Reproduction on Reverse Side.)

I, S._D. Dawson
certify that I have carefully performed reviewed the work done on the diagrammed corner as reported on this recordation formpandppprove the same.

Wyoming R:L.S. \# 555.
Signature of Surveyor
Registration No.
STATE OF WYOMING,
Office of Clerk and Recorder,
County ontrepenes
This "corner record" was filed for record on the lh_day of
on the cross-index plat and is assigned page No.__, in
 1911, was noted in book No.

\qquad T. 14 R \qquad 0
\qquad R. \qquad Mar.
\qquad т.
\qquad R. \qquad Mar.
\qquad т.
\qquad R. \qquad Mir. T. \qquad R. \qquad T. \qquad R. \qquad Mar.

State of Wyoming Corner Record

(In compliance with the CORNER PERPETUATION AND FILING ACT, Wyoming Statutes, 1977, Section 36-11-101, et. seq., and the Rules and Regulations of the Board of Registration for Professional Engineers and Professional Land Surveyors)

Reverse side of this form may be used if more space is needed.
Record of original survey and citation of source of historical information (if corner is lost or obliterated). Description of corner monumentation evidence found and/or monument and accessories established to perpetuate the location of this corner. Sketch of relative location of monument, accessories, and reference points with course and distance to adjacent corner(s) (if determined in this survey). Method and rationale for reestablishment of lost or obliterated corner.

G.L.O. Notes: Unknown

Subsequent Records: Wenandy Acres, (circa April 25, 1946). Certified Land Corner Recordation form filed April 16, 1974, by Mr. D. Dawson, Wyoming L.S. No. 555.

Found: A No. 5×24 " rebar with a $2 "$ aluminum cap marked "A.V.I. P.C. T14N R66W S26 S35 1994 P.L.S. 2927". This monument was set by me after construction of the East Pershing Boulevard Reconstruction project done under the design by A.V.I., p.c..
Reset: A No. $6 \times 30 "$ rebar with 3 i" Aluminum Cap with a small amount of anchor concrete, approximately 0.1^{\prime} below the asphalt roadway and in the approximate centerline of East Pershing Boulevard (Old U.S. Hwy 30). The $3 \frac{1}{4}^{\prime \prime}$ aluminum cap was marked as noted below.
Aluminum Cap Markings
A.V.I. P.C.
T. $14 \mathrm{~N} . \quad \mathrm{R} 66 W.$.
$1 / 4-\frac{\mathrm{S} 26}{\mathrm{~S} 35}$
1997
PLS 2927

TIES FROM THE CORNER OF THIS RECORD:
BASIS OF BEARINGS AND MEASURED BY THE TRIMBLE RTK GPS METHODS
$\begin{array}{lll}\text { Corner Identification } & & \text { Monumentation } \\ \text { NW Cor. Sec. } 35 & \\ \text { SW Aluminum Cap } \\ \text { SW Cor Wenandy Acres } & & 3 / 4 " \text { Iron Pipe }\end{array}$
SE Cor Tract 7 Wenany Acres $1 / 2 "$ Ir Pip

Bearing
N89ํ $28^{\prime \prime} 40^{\prime \prime} \mathrm{W}$
N00 ${ }^{\circ} 29^{\prime}{ }^{\prime \prime}$ "
N74ㅇ́ㅇ́21"E 235.52'

,

Distance 2650.88'

CROSS INDEX DIAGRAM

Firm/Agency, Address
Pau1 A. Reid, A.V.I.p.c.
2035 Westland Road
Cheyenne, WY 82001

Telephone Number:
(307)-637-6017

This corner record was prepared by me or under my direction and supervision. SEAL \& SIGNATURE
Date of Field Work: 9, May, 1997 Office Reference: Job No. 2-2022.97

Corner Name: N \& Corner Section: 35 T 14 N R_66W;6TH P.M. Cross-Index No.: V-19

184967
 LaRAMIE OOUNTY CLERK Cheyenne, wy.

-96 JUN 18 AM 1055

EASEMENT

KNOW ALL MEN BY THESE PRESENTS: That the undersigned, Lyle Wayne Keto, hereinafter referred to as GRawror, in consideration of the sum of two thousand one hundred dollars $(\$ 2,100.00+$), the receipt of which is hereby acknowledged, hereby warrants, grants, bargains, sells and conveys to the CITY Or CHEYEMAE and its BOARD OF PUBLIC UTILITIEs, their successors and assigns, hereinafter collectively referred to as GRANTKE, a perpetual utility easement to construct, reconstruct, operate, maintain and remove such water and sewer pipelines and appurtenances thereto, including any necessary utilities, on, over, under, through and across certain lands owned by the GRANTOR, a strip of land being 20 feet in width, being a portion of Tracts 237, 238, 239 and 240, gunnyside Addition, 6 th Filing, Laramie County, Wyoming, being more particularly described on Exhibit "A" attached hereto and by this reference incorporated herein.

GRANTEE shall have the right of ingress and egress over and across the Land of the Grantor to and from the above described property and the right to clear obstructions on the easement premises.

GRANTOR reserves the right to occupy and use said Easement for all purposes not inconsistent with, nor interfering with the rights herein granted, specifically, the right to cross said easement with a water line at approximately the boundrary line between Tracts 238 and 239 ; and the right to construct a road or street.

The rights, conditions and provisions of this easement shall inure to the benefit of and be binding upon the heirs, executors, administrators, successors and assigns of the respective parties hereto, and by the execution and acknowledgement thereof, GRANTOR jointly and severally waives any homestead rights to the abovedescribed lands so far as the same may be affected by this agreement.

IN WITNESS WHEREOF, I have hereunto set my hand this $/ 7 \neq /$ day of yule , 199 gl.

State of Wyoming)
County of Laramie)
On this $\quad 17^{* /}$ appeared day of
 , 199 C , , before me personally appeared , to me known to instrument and acknowledged that executed the same as hisgoing act and deed
of

\qquad day

My Commission Expires: \qquad

LAND DESCRTPTIOM

A etrip of land being 20 feet in width, being a portion of Tracts $237,238,239$ and 240 , Sunnyside Addition, Sixth Filing, Laramie County, Wyoming, and being more particularly described as follows:

Beginning at a point on the east line of said Tract 240 , said point lying $359^{\circ} 50^{\prime} 3^{\circ \prime}$ (with all azimuths being angles right from North and being based on the City of Cheyenne Control Net,) a distance of 289.74 feet from the southeast corner of gaid Tract 240;
thence $359^{\circ} 50^{\circ} 35^{\prime \prime}$, along said east line, a distance of 20.00 feet to a point;
thence $270^{\circ} 06^{\circ} 29^{\prime \prime}$, a distance of 327.58 feet to a point;
thence $221^{\circ} 37^{\prime} 14^{\prime \prime}$, a distance of 194.29 feet, more or less, to a point on the northeast line of Dry Creek Parkway;
thence $135^{\circ} 46^{\prime} 42^{\prime \prime}$, along said northeast line, a distance of 20.05 feet to a point;
thence $41^{\circ} 37^{\prime} 14^{\prime \prime}$, a distance of 186.74 feet to a point;
thence $90^{\circ} 06^{\circ} 29^{\prime \prime}$, a distance of 318.66 feet, more or less, to a point on the east line of said Tract 240 , being the point of beginning;
said strip of land containing 0.24 acres, more or less.

BOOK 1426

APPENDIX C - DRAINAGE CALCULATIONS

Calculation of Peak Runoff using Rational Method

Designer: Adrienne Lemmers/Elizabeth Landry Company: Y2 Consultants				Version 2.00 released May 2017						
Date: 6/12/2023				Cells of this color are for required user-input						
Project: Van Buren Ave Corridor Plan				Cells of this color are for optional override values						
Location: Cheyenne, WY				Cells of this color are for calculated results based on overrides						
Subcatchment Name	Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousnes s	Runoff Coefficient, C						
				2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
PreDevelopment	23.30	B	2.0	0.01	0.01	0.07	0.26	0.34	0.44	0.54
Post- Development	23.30	B	30.0	0.20	0.23	0.30	0.44	0.50	0.57	0.65

$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{i}^{0.33}}$
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{t}}}=\frac{L_{t}}{60 V_{t}}$

	Overland (Initial) Flow Time					Channelized (Travel) Flow Time						
Subcatchment Name	Overland Flow Length $\mathrm{L}_{\mathrm{i}}(\mathrm{ft})$	U/S Elevation (ft) (Optional)	D/S Elevation (ft) (Optional)	Overland Flow Slope \mathbf{S}_{i} (ft/ft)	Overland Flow Time $\mathrm{t}_{\mathrm{i}}(\mathrm{min})$	Channelized Flow Length $L_{t}(f t)$	U/S Elevation (ft) (Optional)	D/S Elevation (ft) (Optional)	Channelized Flow Slope $S_{t}(f t / f t)$	NRCS Conveyance Factor K	Channelized Flow Velocity V_{t} (ft/sec)	Channelized Flow Time $t_{t}(\min)$
PreDevelopment	500.00	6085.00	6062.70	0.045	26.81	4579.74	6085.00	5980.00	0.023	7	1.06	72.01
PostDevelopment	300.00	6085.00	6073.70	0.038	17.54	4579.74	6085.00	5980.00	0.023	20	3.03	25.20

EXISTING STREET CAPACITY CALCULATIONS

The cross-sectional flow area, A, can be expressed as:

$$
A=\frac{S_{x} T^{2}}{2}
$$

The gutter velocity at peak capacity may be found from continuity ($V=Q / A$)

Figure 7-1. Gutter section with uniform cross slope

For a triangular cross section as shown in Figure 7-1, Manning's equation for gutter flow is written as:

$$
Q=\frac{1.8}{n} A R^{2 / 3} S_{o}^{1 / 2}=\frac{0.56}{n} S_{x}^{5 / 3} S_{o}^{1 / 2} T^{8 / 3}
$$

Equation 7-1

Where:

$$
\begin{aligned}
& Q=\text { calculated flow rate for the half-street }(\mathrm{cfs}) \\
& n=\text { Manning's roughness coefficient }(0.016 \text { for asphalt street with concrete gutter, } 0.013 \text { for } \\
& \text { concrete street and gutter) } \\
& R=\text { hydraulic radius of wetted cross section }=A / P(\mathrm{ft}) \\
& A=\text { cross-sectional area }\left(\mathrm{ft}^{2}\right) \\
& P=\text { wetted perimeter of cross section }(\mathrm{ft}) \\
& S_{x}=\text { street cross slope }(\mathrm{ft} / \mathrm{ft}) \\
& S_{\mathrm{o}}=\text { longitudinal slope }(\mathrm{ft} / \mathrm{ft}) \\
& T=\text { top width of flow spread (} \mathrm{ft}) .
\end{aligned}
$$

The flow depth can be found using:

$$
y=T S_{x}
$$

Equation 7-2

Where:
$y=$ flow depth at the gutter flowline (ft).
Note that the flow depth generally should not exceed the curb height during the minor storm based on Table 7-2. Manning's equation can be written in terms of the flow depth, as:

$$
Q=\frac{0.56}{n S_{x}} S_{L}^{1 / 2} y^{8 / 3}
$$

0.016 for asphalt with concrete curb and gutter 0.5 curb height (ft)					Q1 minor (10 year)= Q1 major (100 year)=						23.3 acres											
					12.32																	
					48.57																	
STA	Roadway Slope (\%)	Reduction Factor for Gutter Flow	Reduction Factor for Gutter Flow	Road Width (ft)							Road Cross Slope (\%)	Total Catchmet Area (ac)		\% of Total Catchment Area (ac)	Peak Flow rate (cfs)	Allowable Flow rate, Major Storm (cfs)	Calculated Runoff for Minor Storm, 10 year (cfs)	Allowable Flow rate, Minor Storm (cfs)	Calculated Runoff for Major Storm, 100 year (cfs)	Runoff with Inlets, Minor Storm (cfs)	Runoff with Inlets, Major Storm (cfs)	
13.054	-6	0.43	0.34	41		2	9.3	0.399	165.4	56.2	4.92	71.1	19.39			Begin new alignment, flows to the south						
60.762	-0.5	1	1	41		2	10.02	0.430	13.8	13.8	5.30	13.8	20.89			Another flat spot						
85.137	0.25	1	1	41			10.05	0.431	6.9	6.9	5.31	6.9	20.95			Another flat spot						
130.363	-4.20	0.56	0.46	41		2	10.17	0.436	115.8	53.2	5.38	64.8	21.20									
202.937	-6	0.43	0.34	41		2	10.33	0.443	165.4	56.2	5.46	71.1	21.53									
309.332	-2.8	0.78	0.64	41		2	10.57	0.454	77.2	49.4	5.59	60.2	22.03			Low/flat point						
469.228	-0.40	1	1	41		2	10.95	0.470	11.0	11.0	5.79	11.0	22.83			Another flat spot						
542.429	-0.7	1	1	41		2	11.14	0.478	19.3	19.3	5.89	19.3	23.22			Another flat spot						
667.81	-0.65	1	1	41		2	11.47	0.492	17.9	17.9	6.06	17.9	23.91			Another flat spot						
764.882	-1	1	1	41		2	11.75	0.504	27.6	27.6	6.21	27.6	24.49									
801.605																Inlet location from drainage report						
816.111	-1.6	1	0.99	41		2	11.9	0.511	44.1	43.7	6.29	44.1	24.81	0.69	15.21	Intersection with Liberty at 8+38						
1026.334	-4	0.6	0.48	41		2	12.39	0.532	110.2	52.9	6.55	66.1	25.83	0.95	16.23							
1183.557	-2.7	0.8	0.66	41		2	12.67	0.544	74.4	49.1	6.70	59.5	26.41	1.10	16.81							
1256.884	-1.4	1	1	41		2	12.79	0.549	38.6	38.6	6.76	38.6	26.66	1.16	17.06							
1275.938																Inlet location from drainage report						
1290.862	-4	0.6	0.48	41		2	12.84	0.551	110.2	52.9	6.79	66.1	26.77	0.00	7.57							
1312.987	1.85	1	0.9	41		2	12.87	0.552	51.0	45.9	6.81	51.0	26.83	0.00	7.63	Intersection with Green River at 13+20						
1331.053	-0.40	1	1	41		2	12.9	0.554	11.0	11.0	6.82	11.0	26.89	0.00	7.69	Low/flat point						
1378.065	-1	1	1	41		2	12.99	0.558	27.6	27.6	6.87	27.6	27.08	0.00	7.88							
1563.73	0.20	1	1	41		2	13.4	0.575	5.5	5.5	7.09	5.5	27.93	0.00	8.73	I'll see if we can improve the slope in this area						
1726.669	-0.1	1	1	41			13.75	0.590	2.8	2.8	7.27	2.8	28.66	0.00	9.46	to improve the drainage capacity of the street						
1808.109	-2.00	0.99	0.84	41		2	13.93	0.598	55.1	46.3	7.37	54.6	29.04	0.00	9.84	Intersection with Rock Springs at 19+74						
1965.383																Inlet location from drainage report						
2136.629	-4.60	0.56	0.44	41		2	14.61	0.627	126.8	55.8	7.73	71.0	30.46	0.00	8.36							
2262.239	-2.30	0.94	0.76	41		2	14.85	0.637	63.4	48.2	7.85	59.6	30.96	0.00	8.86	Low/flat point, intersection with Eastview at 23+1						
2357.501																Inlet location from drainage report						
2459.078	-0.70	1	1	41		2	15.12	0.649	19.3	19.3	7.99	19.3	31.52	0.00	7.42							
2836.365	-1.20	1	1	41		2	18.87	0.810	33.1	33.1	9.98	33.1	39.34	0.00	15.24	Intersection with Carter at $28+39$						
2964.086	-0.60	1	1	41		2	21	0.901	16.5	16.5	11.10	16.5	43.78	0.00	19.68	Low point where concrete pan is, need inlets.						
3025.896	2.80	0.78	0.64	41		2	21.71	0.932	77.2	49.4	0.84	60.2	3.31	0.00	3.31	Add this to the 16.68=						
3107.599	5.60	0.46	0.37	41		2	22.49	0.965	154.3	57.1	0.43	71.0	1.69	0.00	1.69							
3175.713	2.10	0.64	0.5	41		2	23.01	0.988	57.9	28.9	0.15	37.0	0.60	0.00	0.60							
																Top of hill on south end of Van Buren, flows to the north,						
3266.117	0.40	1	0.86	41		2	23.3	1.000	11.0	9.5	0.00	11.0	0.00	0.00	0.00	intersection with Laramie at 32+91						
3363.853	-5.80	0.44	0.36	41		2			159.9	57.5	0.00	70.3	0.00									
3468.408	-3.00	0.75	0.6	41		2			82.7	49.6	0.00	62.0	0.00									
3520.583	1.40	1	1	41		2			38.6	38.6	0.00	38.6	0.00									
3562.064	-1.70	1	0.99	41		2			46.9	46.4	0.00	46.9	0.00			End of new alignment						

INLET CAPACITY AND DESIGN

```
    0 . 0 1 6 \text { for asphalt with concrete curb and gutter}
        3f,}\mathrm{ grate length for Type A inlet
    W=}\quad2.5\textrm{ft}\mathrm{ , grate width for Type A inlet
    \alpha= 0
    \beta= 0.68
    \nu= 0.06
    \eta= 0.0023
V}=1.56\textrm{ft}/\textrm{sec}\mathrm{ Splash Over Velocity
    D= 0.67 Water depth at gutter flow line outside the local depression at the inlet, ft
Hc}=\quad0.5 Height of curb opening throat (ft
\begin{tabular}{rl}
\(Q_{W}=\) & 6.09 Wier Flow, CFS, Sump \\
\(Q_{0}=\) & 5.15 Orifice Flow, CFS, Sump \\
\(Q_{\text {Open }}=\) & 5.72 Capacity of curb opening, CFS, Sump \\
\(Q_{T}=\) & 9.7 Total combination capacity, CFS, Sump
\end{tabular}
\begin{tabular}{rrr}
\(\mathrm{N}_{\mathrm{w}}=\) & 1 & \\
\(\mathrm{C}_{\mathrm{w}}=\) & 3.7 & Values are from Table 7-7 \\
\(\mathrm{N}_{0}=\) & 1 & for Curb \\
\(\mathrm{C}_{0}=\) & 0.66 & opening for Type \(13 /\) No 16 \\
\(\mathrm{C}_{\mathrm{m}}=\) & 0.86 & Combination \\
\(\mathrm{Q}_{\mathrm{w}}=\) & 10.47 Wier Flow, CFS \\
\(\mathrm{Q}_{0}=\) & 28.09 Orifice Flow, CFS \\
\(\mathrm{Q}_{\mathrm{M}}=\) & 14.74 Mixed Flow, CFS \\
\(\mathrm{Q}_{1}=\) & 10.47 Interception Capacity (cfs)
\end{tabular}
Leftover flow
```


4.85 CFS

```
This is much lower than the allowable flow rate, to prevent
Curb overtopping. 2 inlets are okay.
```


CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Van Buren Corridor Study
Pipe ID: Inlet Pipes to Manhole

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Van Buren Corridor Study
Pipe ID: Stormwater Pipe to Dry Creek

Design Information (Input)			ft/ft
Pipe Invert Slope Pipe Manning's n-value Pipe Diameter Design discharge	So =	0.0100	
	$\mathrm{n}=$	0.0130	
	$\mathrm{D}=$	24.00	
	$\mathrm{Q}=$	19.40	
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	22.68	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	2.01	radians
Flow area	$\mathrm{An}=$	2.39	sq ft
Top width	$\mathrm{Tn}=$	1.81	ft
Wetted perimeter	$\mathrm{Pn}=$	4.02	ft
Flow depth	$\mathrm{Yn}=$	1.42	ft
Flow velocity	$\mathrm{Vn}=$	8.11	fps
Discharge	$\mathrm{Qn}=$	19.40	cfs
Percent of Full Flow	Flow $=$	85.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.24	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c $=$	2.19	radians
Critical flow area	Ac =	2.67	sq ft
Critical top width	Tc =	1.62	ft
Critical flow depth	Yc =	1.58	ft
Critical flow velocity	$\mathrm{Vc}=$	7.27	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: Van Buren
ID: Dry Creek Outlet

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Design Information:			
Design Discharge	Q	19.4	cfs
Circular Culvert:			
Barrel Diameter in Inches	$\mathrm{D}=$	24	inches
Inlet Edge Type (Choose from pull-down list)	Groov	dge Proje	
Box Culvert:			
		OR	
Barrel Height (Rise) in Feet	H (Rise) $=$		ft
Barrel Width (Span) in Feet	W (Span) =		ft
Inlet Edge Type (Choose from pull-down list)			
Number of BarrelsInlet Elevation	\# Barrels =	1	
	Elev IN =	5979	ft
Outlet Elevation OR Slope	Elev OUT =	5965.5	ft
Culvert Length	$\mathrm{L}=$	840	ft
Manning's Roughness	$\mathrm{n}=$	0.012	
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0	
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1	
Tailwater Surface Elevation Max Allowable Channel Velocity	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$	5974	ft
	$\mathrm{V}=$	5	ft / s
Calculated Results:			
Culvert Cross Sectional Area Available	$\mathrm{A}=$	3.14	ft^{2}
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	1.14	ft
Culvert Critical Depth	$\mathrm{Y}_{\mathrm{c}}=$	1.58	ft
Froude Number	$\mathrm{Fr}=$	1.90	Supercritical!
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.20	
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	8.84	
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	10.04	ft
Headwater:			
Inlet Control Headwater	$\mathrm{HW}_{\mathrm{I}}=$	2.57	ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	N/A	ft
Design Headwater Elevation	HW =	5981.57	ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/D =	1.29	
Outlet Control Headwater Approximation	te for Low Flow	Backwat	alculations Req
Outlet Protection:			
Flow/(Diameter^2.5)	$\mathrm{Q} / \mathrm{D}^{\wedge} 2.5=$	3.43	$\mathrm{ft}^{0.5} / \mathrm{s}$
Tailwater Surface Height	$Y_{t}=$	8.50	ft
Tailwater/Diameter	Yt/D $=$	4.25	
Expansion Factor	$1 /(2 * \tan (\Theta))=$	6.70	
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	3.88	ft^{2}
Width of Equivalent Conduit for Multiple Barrels	$\mathrm{W}_{\text {eq }}=$	-	ft
Length of Riprap Protection	$L_{p}=$	6	ft
Width of Riprap Protection at Downstream End	$\mathrm{T}=$	3	ft
Adjusted Diameter for Supercritical Flow	$\mathrm{Da}=$	1.57	ft
Minimum Theoretical Riprap Size	$\mathrm{d}_{50} \mathrm{~min}=$	0	in
Nominal Riprap Size	d_{50} nominal $=$	6	in
MHFD Riprap Type	Type $=$	VL	

APPENDIX D - PUBLIC PARTICIPATION

PUBLIC MEETING \#1 Results

1. Sign In-Sheets
2. Drainage
3. Speed Options - Mid to Long Term
4. Speed Options - Short Term
5. Non-Motorized Options - Mid to long term
6. Non-Motorized Options - Short Term

7. Aerial imagery with Post It Note Comments

8. Survey Results

Public Meeting \#1 Sign-In Sheet			
January 25,2023 from 6:00pm to 70:30pm, 4312 Van Buren Avenue, DLluine Elementary			
Name	Email	Phone Number	(ff Applicable)
Amy Robinson	Sarobinson 0818 remsh .com	307-421-2912	
I.m Bogd	dijl boydrognaiticon	$816.139-0489$	
Bardara Poyd	blbay $7 \times$ msna com	816-7168722	CAC
UriCliz : K ATHY ω	LCitas 5015 crean rios.	590\%-634-24	
TERRY ZOIK心R		3077782987	
Gext M. Wesson	garywilson 7190 e gneilicom	307-640-4868	
Amm Marie Taylor	Anmmarie C 42 Consultants, ion	$632-5656$	12 Casaltuats
Kevily Geicesory	kerin.erickson Cwyogov	$631-6322$	WYDOT
Chardes Blam	adosina chereneity os.	4303	cidy of Chy
Comor White	cwhite Pecheremecty,ory	307-6384342	City of Cheome

VAN BUREN CORRIDOR PLAN			
Public Meeting \#1 Sign-In Sheet			
January 25, 2023 from 6:00pm to 7 :30pm, 4312 Van Buren Avenue, DLlodine Elementary			
Name	Email	Phone Number	
Lule Keto ound Put		635-1004	
Taustern		2066.6877	
Stacke Evams		$970-632 \cdot 8773$	
Chad Dunn		$307-288-8736$	
Deveny + Mum Padeut		307 (3) 4588	
Tin wold		301630167	4
Jean Vehtr		307.638 .437	
Riggs Züker		307-778-2983	
Cassie Prkett			
Devient muomie		300-421-2767	Yz
Nimey Mmatetor			
Cody lavelis		254-383-0009	

VAN BUREN AVENUE CORRIDOR STUDY DRAINAGE OPTIONS

SUBSURFACE DRAINAGE
©

SURFACE DRAINAGE

VaN BUREN AVENUE CORRIDOR STUDY SPEED OPTIONS (MIDTO LONG TERM)

CROSSWALK MARKING AND SIGNAGE

RAISED CURB RADII

CHEYENNE
METROPOLITAN
PLANNING
ORGANIZATION

Thank you for your input!

VAN BUREN AVENUE CORRIDOR STUDY SPEED OPTIONS (SHORT TERM)

SPEED ENFORCEMENT

INCREASED SIGNAGE

VAN BUREN AVENUE CORRIDOR STUDY NON-MOTORIZED OPTIONS (MID TO LONG TERM)

SIDEWALK INSTALL \& INFILL

MUITI-USE PATHWAY

CHEYENNE
organization

CONSULTANTS

Thank you for your input!

VAN BUREN AVENUE CORRIDOR STUDY NON-MOTORIZED OPTIONS (SHORT TERM)

SHARROWS, SIGNAGE, AND BIKE LANES

BIKE ROUTE

Thank you for your input!

Phase 1 Van Buren Avenue Corridor Plan Survey
Q1 How often do you use Van Buren Avenue between Dell Range Boulevard and US-30 (Lincolnway)?

Choice	Responses	
Daily	20	80.00%
Weekly	0	0.00%
Monthly	4	16.00%
Never	1	4.00%
How many people answered survey	$\mathbf{2 5}$	
Skipped	$\mathbf{0}$	

phase 1 Van Buren Avenue Corridor Plan Survey

Q2 How do you most often use Van Buren Avenue (Can select multiple answers)

Choice	Responses	
Walk	10	41.67%
Bike	4	16.67%
Bus	1	4.17%
Auto Driver	23	95.83%
Auto Passenger	6	25.00%
Other Answers	3	12.50%
I live on Van Buren Ave.		
Residence		
How many people answered survey	$\mathbf{2 4}$	
Skipped	$\mathbf{1}$	

Phase 1 Van Buren Avenue Corridor Plan Survey

Q3 What concerns do you have about Van Buren Avenue? (Can select multiple answers)

Choice	Responses	
Speeding	23	95.83%
Child Safety	17	70.83%
Bike Facilities	5	20.83%
Sidewalks	17	70.83%
Crosswalks	15	62.50%
Transit	3	12.50%
Pavement Condition	15	62.50%
Drainage	12	50.00%
Street Lights	18	75.00%
Disabled Access	4	16.67%
Mailboxes	9	37.50%
Major Intersections	13	54.17%
Greenway Connections	2	8.33%
Other Answers	1	4.17%
There is too much traffic on Van Buren.	$\mathbf{1}$	
How many people answered survey	$\mathbf{2 4}$	
Skipped	$\mathbf{0}$	

Phase 1 Van Buren Avenue Corridor Plan Survey
Q4 What Intersections(s) along Van Buren are of greatest concern to you?
(Can select multiple answers)

Choice	Responses	
Dell Range Blvd.	20	83.33%
Liberty St.	4	16.67%
Green River St.	8	33.33%
Rock Springs St.	5	20.83%
Eastview St.	6	25.00%
Rawlins St.	4	16.67%
Carter Rd.	2	8.33%
Laramie St.	5	20.83%
US-30 (Lincolnway)	16	66.67%
How many people answered survey	$\mathbf{2 4}$	
Skipped	$\mathbf{0}$	

Phase 1 Van Buren Avenue Corridor Plan Survey

Q5 What improvement(s) would you most like to see along Van Buren Avenue?

Response

I would like to see 6' sidewalks, curb and gutter along the entire length, with shared vehicle-bicycle lanes, parking on one side only, and small roundabouts at Green River and Rawlins intersections to manage traffic and constrain driving speeds.

Ban large construction vehicles using VB as a shortcut.
It should not be a major cross street between Dell Range and Hwy 30 because it is a residential neighborhood with a major elementary school.

More lighting, slow down the auto traffic

With the large development of family homes and the increased amount of children crossing dell range it's crucial to have a safe way for children to cross dell range. I have witnessed people blow thru when the crosswalk lights are on. To be proactive and prevent another tragic incident it would be wise to install a bridge or tunnel for that crossing.

Sidewalks and maintenance of sidewalks. The sidewalks are so bad it's hard to safely ride or walk, and the other side has no sidewalks. Limited street lighting not only on that street but entire neighborhood. People go so fast on that street and only crosswalks are near the school. Also safety of the kids crossing del range from van buren. Most drivers don't notice the flashing crosswalk light there. Also during after school hours and busy times it's hard to make a left hand turn onto dell range.

I live on Van Buren and see people speeding numerous times a day. Two days ago a speeding car hit a street sign. There are no lights on long stretches of Van Buren. And despite the fact that children walk down this busy road to get on the bus before sunrise and get off the bus sometimes after sunset, there are also long stretches that do not have sidewalks.

Stop lights
Not sure but definitely need more lanes on Dell Range. Maybe somehow a stoplight at Van Buren and Dell Range.

PUBLIC MEETING \#2 Results

1. Sign In-Sheets

2. Survey Results

VAN BUREN CORRIDOR PLAN

Public Meeting \#2 Sign-In Sheet
June $1^{\text {st }}, 2023$ from 6:00pm to 7:30pm, 4312 Van Burin Avenue, Dildine Elementary

VAN BUREN CORRIDOR PLAN

Public Meeting \#2 Sign-In Sheet
June $1^{\text {st }}, 2023$ from 6:00pm to 7:30pm, 4312 Van Burin Avenue, Dildine Elementary

Phase 2 Van Buren Avenue Corridor Plan Survey

Q1 Do you feel you've been given sufficient opportunity to provide input on this project?

Choice	Responses	
Yes	10	90.91%
No	1	9.09%
Other Answers	0	0.00%
How many people answered survey	$\mathbf{1 1}$	
Skipped	$\mathbf{0}$	

Do you feel you've been given sufficient opportunity to provide input on this project?

Phase 2 Van Buren Avenue Corridor Plan Survey

Q2 Do you have any concerns that have not been addressed?

Response

Many of the proposed changes will decrease the value of people's homes by decreasing lawn size, removing established Trees and Landscaping, and bringing the public easements closer to individuals houses. This is not only a concern aesthetically, but is also a huge safety concern by allowing the public closer access to resident's front doors. Adding bike lanes and full width sidewalks in some areas will drastically reduce the size of individual yards and require removing well-established Trees and Landscaping, as well as relocating cable lines, fiber optic lines, utility lines, and even mailboxes which would require approval by the Postal Service. Bike lanes are not necessary in this neighborhood as we have almost zero bike traffic. Many of these ideas are clearly not well thought out, and have not taken into consideration how they will affect the lives of the people who live here.

1) I am still uncertain where my front property line is vs. the easement for utilities and, apparently, the new configuration of the sidewalk. How much of what I thought was "my" yard (recognizing that utility co.s could dig to access their underground lines) will now be taken up by the 6 " wide sidewalks and the green area buffering the sidewalks from the street?
2) Who will maintain the new, wider sidewalks and the grass closest to the street? If both are the responsibility of the homeowner, has anyone considered a) the increased stress of snow removal on older homeowners, and b) the lack of such maintenance on similar type sidewalks along portions of Dell Range, leading to lots of weeds, unshoveled walks, etc.?
3) Where will crosswalks be at the "mini-roundabout" for the school children and other members of the public?
4) I do not see any advantage to the mini-roundabout, since the presenter said people would just be able to drive right over the raised cement that comprises the roundabout. Additionally, how will both snow removal trucks and general traffic be able to see where the roundabout is when there is snow on the street??

NO	
NO	
Excellent idea for traffic light at Dell Range / Van Buren - ASAP	
The speed of vehicles must be slowed Thank you	
Mail box locations on Van Buren Ave	
Extreme hazard to retrieve our mail, given the intense speed of vehicles on Van Buren Ave.	
How many people answered survey	$\mathbf{8}$
Skipped	$\mathbf{3}$

Phase 2 Van Buren Avenue Corridor Plan Survey

> Q3 Do you like the concept of a mini roundabout at Green River?

Choice	Responses	
Yes	5	45.45%
No	6	54.55%
Other Answers	1	9.09%
Prefer speed bumps for speeding, often people drive 45-50 MPH		
How many people answered survey	$\mathbf{1 1}$	
Skipped	$\mathbf{0}$	

Phase 2 Van Buren Avenue Corridor Plan Survey

Q4 Do you think the addition of bike lanes, full width sidewalks, and landscaping strips add value and safety to the corridor?

Choice	Responses	
Yes	8	72.73%
No	2	18.18%
Other Answers	1	9.09%
As described above, I have questions about the sidewalk configuration. I also wonder how necessary bike lanes are on both sides of the street-I see bikes daily, but they always use the sidewalk on the west side of Van Buren, never on the east.		
How many people answered survey		
Skipped	$\mathbf{1 1}$	

Do you think the addition of bike lanes, full width sidewalks, and landscaping strips add value and safety to the corridor?

Phase 2 Van Buren Avenue Corridor Plan Survey

Q5 Do you feel that drainage has been adequately addressed between this project and the other proposed work along the corridor?

Choice	Responses	
Yes	4	44.44\%
No	3	33.33\%
Other Answers	2	22.22\%
I really don't know		
I don't know! I was in the hospital during the first public meeting,		
when apparently at least some info. was presented about the		
drainage plan; at the meeting June 1st, no info. at all was presented to us. I have a call in to the City to try to get		
information, but have not heard anything back yet. I don't feel		
like there has been sufficient info. provided through any other		
public means that I have seen or heard--just that there is a		
project in the works, but no details about what to expect.		
Therefore, I can't determine if this topic has been been adequately addressed.		
How many people answered survey	9	
Skipped	3	

Do you feel that drainage has been adequately addressed between this project and the other proposed work along the corridor?

APPENDIX E - TRAFFIC DATA AND ANALYSIS

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave Location: South of Dell Range Blvd

A study of vehicle traffic was conducted with the device having serial number 404055. The study was done in the Southbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 08/31/2022 at 12:00 AM and concluded on 09/01/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 682 vehicles passed through the location with a peak volume of 29 on 08/31/2022 at [03:15 PM-03:30 PM] and a minimum volume of 0 on 08/31/2022 at [11:45 PM-12:00 AM]. The AADT count for this study was 682.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 28 MPH with 9.73% vehicles exceeding the posted speed of $30 \mathrm{MPH} .0 .60 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85 th percentile was 33.90 MPH .

$\begin{gathered} < \\ \text { to } \\ 9 \end{gathered}$	10 to 14	$\begin{aligned} & 15 \\ & \text { to } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & \text { to } \\ & 39 \end{aligned}$	40 to 44	$\begin{aligned} & 45 \\ & \text { to } \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \end{aligned}$ 54	$\begin{aligned} & 55 \\ & \text { to } \\ & 59 \end{aligned}$	60 to 64	$\begin{aligned} & 65 \\ & \text { to } \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & \text { to } \\ & 74 \end{aligned}$	75 to $>$
1	3	42	170	223	164	48	7	3	3	0	0	2	1	1

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 311 which represents 47 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 303 which represents 45 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 37 which represents 6 percent of the total classified vehicles. The number of Tractor Trailers in the study was 17 which represents 3 percent of the total classified vehicles.

$\begin{aligned} & < \\ & \text { to } \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & \text { to } \\ & 20 \\ & \hline \end{aligned}$	21 to 23	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \\ & \hline \end{aligned}$	$\begin{array}{r} 28 \\ \text { to } \\ 31 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & \text { to } \\ & 43 \end{aligned}$	44 to $>$							
311	259	44	11	14	15	6	8							

CHART 2

HEADWAY

During the peak traffic period, on 08/31/2022 at [03:15 PM-03:30 PM] the average headway between vehicles was 30 seconds. During the slowest traffic period, on 08/31/2022 at [11:45 PM-12:00 AM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 68.00 and 122.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave Location: South of Dell Range Blvd

A study of vehicle traffic was conducted with the device having serial number 404061. The study was done in the Northbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 08/31/2022 at 12:00 AM and concluded on 09/01/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 660 vehicles passed through the location with a peak volume of 23 on 08/31/2022 at [03:30 PM-03:45 PM] and a minimum volume of 0 on 08/31/2022 at [10:00 PM-10:15 PM]. The AADT count for this study was 660 .

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 28 MPH with 7.72% vehicles exceeding the posted speed of 30 MPH . 1.10% percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85 th percentile was 33.06 MPH .

| $<$ | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| to | to | | | |
| 9 | | | | |

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 346 which represents 54 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 248 which represents 39 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 18 which represents 3 percent of the total classified vehicles. The number of Tractor Trailers in the study was 23 which represents 4 percent of the total classified vehicles.

$\begin{aligned} & < \\ & \text { to } \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & \text { to } \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & \text { to } \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \end{aligned}$	$\begin{array}{r} 28 \\ \text { to } \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ \text { to } \\ 37 \\ \hline \end{array}$	38 to 43	$\begin{gathered} 44 \\ \text { to } \\ > \end{gathered}$							
346	220	28	5	7	12	9	8							

CHART 2

HEADWAY

During the peak traffic period, on 08/31/2022 at [03:30 PM-03:45 PM] the average headway between vehicles was 37.5 seconds. During the slowest traffic period, on 08/31/2022 at [10:00 PM-10:15 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 68.00 and 124.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Green River St

A study of vehicle traffic was conducted with the device having serial number 404091. The study was done in the Southbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 08/31/2022 at 12:00 AM and concluded on 09/01/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 663 vehicles passed through the location with a peak volume of 28 on 08/31/2022 at [08:15 AM-08:30 AM] and a minimum volume of 0 on 08/31/2022 at [10:15 PM-10:30 PM]. The AADT count for this study was 663.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 31 MPH with 26.56% vehicles exceeding the posted speed of $30 \mathrm{MPH} .3 .84 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85 th percentile was 39.74 MPH .

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin.
Most of the vehicles classified during the study were Vans \& Pickups. The number of Passenger Vehicles in the study was 231 which represents 37 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 288 which represents 46 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 69 which represents 11 percent of the total classified vehicles. The number of Tractor Trailers in the study was 37 which represents 6 percent of the total classified vehicles.

$\begin{aligned} & < \\ & \text { to } \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & \text { to } \\ & 20 \end{aligned}$	$\begin{aligned} & 21 \\ & \text { to } \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & \text { to } \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & \text { to } \\ & 43 \end{aligned}$	$\begin{gathered} 44 \\ \text { to } \\ > \end{gathered}$							
231	217	71	24	26	23	12	21							

CHART 2

HEADWAY

During the peak traffic period, on 08/31/2022 at [08:15 AM-08:30 AM] the average headway between vehicles was 31.034 seconds. During the slowest traffic period, on 08/31/2022 at [10:15 PM-10:30 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 70.00 and 127.00 degrees F .

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave Location: North of Green River St

A study of vehicle traffic was conducted with the device having serial number 404022. The study was done in the Northbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 08/31/2022 at 12:00 AM and concluded on 09/01/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 668 vehicles passed through the location with a peak volume of 37 on 08/31/2022 at [03:30 PM-03:45 PM] and a minimum volume of 0 on 08/31/2022 at [10:30 PM-10:45 PM]. The AADT count for this study was 668.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 30-35 MPH range or lower. The average speed for all classifed vehicles was 31 MPH with 28.35% vehicles exceeding the posted speed of 30 MPH . 1.54% percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 30 MPH and the 85 th percentile was 38.63 MPH .

$\begin{gathered} < \\ \text { to } \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { to } \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & \text { to } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & \text { to } \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & \text { to } \\ & 44 \end{aligned}$	$\begin{aligned} & 45 \\ & \text { to } \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \\ & 54 \end{aligned}$	$\begin{aligned} & 55 \\ & \text { to } \\ & 59 \end{aligned}$	60 to 64	$\begin{aligned} & 65 \\ & \text { to } \\ & 69 \end{aligned}$	70 to 74	$\begin{gathered} 75 \\ \text { to } \\ > \end{gathered}$
0	12	45	114	127	167	117	34	14	6	3	2	3	2	3

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin.
Most of the vehicles classified during the study were Vans \& Pickups. The number of Passenger Vehicles in the study was 167 which represents 26 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 405 which represents 63 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 49 which represents 8 percent of the total classified vehicles. The number of Tractor Trailers in the study was 27 which represents 4 percent of the total classified vehicles.

$\begin{aligned} & < \\ & \text { to } \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & \text { to } \\ & 20 \end{aligned}$	$\begin{array}{r} 21 \\ \text { to } \\ 23 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & \text { to } \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & \text { to } \\ & 43 \end{aligned}$	$\begin{gathered} 44 \\ \text { to } \\ > \end{gathered}$							
167	302	103	19	19	16	7	16							

CHART 2

HEADWAY

During the peak traffic period, on 08/31/2022 at [03:30 PM-03:45 PM] the average headway between vehicles was 23.684 seconds. During the slowest traffic period, on 08/31/2022 at [10:30 PM-10:45 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 72.00 and 129.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Rock Springs St

A study of vehicle traffic was conducted with the device having serial number 404061. The study was done in the Southbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/13/2022 at 12:00 AM and concluded on 09/14/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 877 vehicles passed through the location with a peak volume of 45 on 09/13/2022 at [03:30 PM-03:45 PM] and a minimum volume of 0 on 09/13/2022 at [10:15 PM-10:30 PM]. The AADT count for this study was 877.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 29 MPH with 9.95% vehicles exceeding the posted speed of $30 \mathrm{MPH} .0 .58 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85th percentile was 34.03 MPH .

<	10	15	20	25	30	35	40	45	50	55	60	65	70	75
to														
9	14	19	24	29	34	39	44	49	54	59	64	69	74	>
1	2	21	131	397	226	54	11	8	5	3	1	0	1	3

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 539 which represents 62 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 276 which represents 32 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 25 which represents 3 percent of the total classified vehicles. The number of Tractor Trailers in the study was 24 which represents 3 percent of the total classified vehicles.

CHART 2

HEADWAY

During the peak traffic period, on 09/13/2022 at [03:30 PM-03:45 PM] the average headway between vehicles was 19.565 seconds. During the slowest traffic period, on 09/13/2022 at [10:15 PM-10:30 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 54.00 and 117.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Rock Springs St

A study of vehicle traffic was conducted with the device having serial number 404055. The study was done in the Northbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/13/2022 at 12:00 AM and concluded on 09/14/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 879 vehicles passed through the location with a peak volume of 32 on 09/13/2022 at [03:45 PM-04:00 PM] and a minimum volume of 0 on 09/13/2022 at [12:00 AM-12:15 AM]. The AADT count for this study was 879.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 29 MPH with 11.27% vehicles exceeding the posted speed of 30 MPH . 1.28% percent of the total vehicles were traveling in excess of 55 MPH. The mode speed for this traffic study was 25 MPH and the 85 th percentile was 34.18 MPH .

<	10	15	20	25	30	35	40	45	50	55	60	65	70	75
to														
9	14	19	24	29	34	39	44	49	54	59	64	69	74	$>$
1	4	24	140	387	208	52	20	6	4	4	1	4	1	5

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 442 which represents 51 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 350 which represents 41 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 37 which represents 4 percent of the total classified vehicles. The number of Tractor Trailers in the study was 31 which represents 4 percent of the total classified vehicles.

$\begin{aligned} & < \\ & \text { to } \\ & 17 \end{aligned}$	18 to 20	21 to 23	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \\ & \hline \end{aligned}$	$\begin{array}{r} 28 \\ \text { to } \\ 31 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & \text { to } \\ & 43 \end{aligned}$	$\begin{aligned} & 44 \\ & \text { to } \\ & > \end{aligned}$							
442	298	52	12	17	9	15	16							

CHART 2

HEADWAY

During the peak traffic period, on 09/13/2022 at [03:45 PM-04:00 PM] the average headway between vehicles was 27.273 seconds. During the slowest traffic period, on 09/13/2022 at [12:00 AM-12:15 AM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 57.00 and 115.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Rawlins St

A study of vehicle traffic was conducted with the device having serial number 404022. The study was done in the Southbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/13/2022 at 12:00 AM and concluded on 09/14/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 1,136 vehicles passed through the location with a peak volume of 39 on 09/13/2022 at [08:15 AM-08:30 AM] and a minimum volume of 0 on 09/13/2022 at [11:15 PM-11:30 PM]. The AADT count for this study was 1,136 .

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 30-35 MPH range or lower. The average speed for all classifed vehicles was 35 MPH with 44.77% vehicles exceeding the posted speed of $30 \mathrm{MPH} .1 .53 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 30 MPH and the 85 th percentile was 42.22 MPH.

$\begin{gathered} < \\ \text { to } \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { to } \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & \text { to } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & \text { to } \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & \text { to } \\ & 44 \end{aligned}$	$\begin{aligned} & 45 \\ & \text { to } \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \\ & 54 \end{aligned}$	$\begin{aligned} & 55 \\ & \text { to } \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & \text { to } \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & \text { to } \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & \text { to } \\ & 74 \end{aligned}$	75 to $>$
1	3	7	70	209	322	265	142	52	13	7	3	2	4	8

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin.
Most of the vehicles classified during the study were Vans \& Pickups. The number of Passenger Vehicles in the study was 383 which represents 35 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 619 which represents 56 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 63 which represents 6 percent of the total classified vehicles. The number of Tractor Trailers in the study was 42 which represents 4 percent of the total classified vehicles.

$\begin{gathered} < \\ \text { to } \\ 17 \end{gathered}$	$\begin{aligned} & 18 \\ & \text { to } \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 21 \\ \text { to } \\ 23 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & \text { to } \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & \text { to } \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & \text { to } \\ & 43 \end{aligned}$	$\begin{gathered} 44 \\ \text { to } \\ > \end{gathered}$							
383	510	109	19	34	15	7	31							

CHART 2

HEADWAY

During the peak traffic period, on 09/13/2022 at [08:15 AM-08:30 AM] the average headway between vehicles was 22.5 seconds. During the slowest traffic period, on 09/13/2022 at [11:15 PM-11:30 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 54.00 and 113.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Rawlins St

A study of vehicle traffic was conducted with the device having serial number 404091. The study was done in the Northbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/13/2022 at 12:00 AM and concluded on 09/14/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 1,061 vehicles passed through the location with a peak volume of 41 on 09/13/2022 at [03:45 PM-04:00 PM] and a minimum volume of 0 on 09/13/2022 at [12:00 AM-12:15 AM]. The AADT count for this study was 1,061 .

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 30-35 MPH range or lower. The average speed for all classifed vehicles was 32 MPH with 24.73% vehicles exceeding the posted speed of $30 \mathrm{MPH} .2 .85 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 30MPH and the 85th percentile was 38.67 MPH .

$\begin{gathered} < \\ \text { to } \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { to } \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & \text { to } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & \text { to } \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & \text { to } \\ & 44 \end{aligned}$	$\begin{aligned} & 45 \\ & \text { to } \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \\ & 54 \end{aligned}$	$\begin{aligned} & 55 \\ & \text { to } \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & \text { to } \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & \text { to } \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & \text { to } \\ & 74 \end{aligned}$	$\begin{gathered} 75 \\ \text { to } \\ > \end{gathered}$
0	4	20	114	313	316	135	47	22	11	8	9	2	3	15

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin.
Most of the vehicles classified during the study were Vans \& Pickups. The number of Passenger Vehicles in the study was 320 which represents 31 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 584 which represents 57 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 67 which represents 7 percent of the total classified vehicles. The number of Tractor Trailers in the study was 48 which represents 5 percent of the total classified vehicles.

$<$ to 17	18 to 20	$\begin{aligned} & 21 \\ & \text { to } \\ & 23 \end{aligned}$	$\begin{gathered} 24 \\ \text { to } \\ 27 \\ \hline \end{gathered}$	$\begin{aligned} & 28 \\ & \text { to } \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & \text { to } \\ & 37 \end{aligned}$	38 to 43	44 to $>$							
320	456	128	24	30	16	14	31							

CHART 2

HEADWAY

During the peak traffic period, on 09/13/2022 at [03:45 PM-04:00 PM] the average headway between vehicles was 21.429 seconds. During the slowest traffic period, on 09/13/2022 at [12:00 AM-12:15 AM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 54.00 and 115.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Laramie St

A study of vehicle traffic was conducted with the device having serial number 404055. The study was done in the Southbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/15/2022 at 12:00 AM and concluded on 09/16/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 1,206 vehicles passed through the location with a peak volume of 47 on 09/15/2022 at [08:00 AM-08:15 AM] and a minimum volume of 0 on $09 / 15 / 2022$ at [11:30 PM-11:45 PM]. The AADT count for this study was 1,206.

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 30 MPH with 15.72% vehicles exceeding the posted speed of $30 \mathrm{MPH} .0 .75 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85 th percentile was 35.27 MPH .

$\begin{gathered} < \\ \text { to } \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & \text { to } \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & \text { to } \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & \text { to } \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & \text { to } \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & \text { to } \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & \text { to } \\ & 44 \end{aligned}$	$\begin{aligned} & 45 \\ & \text { to } \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \\ & 54 \end{aligned}$	$\begin{aligned} & 55 \\ & \text { to } \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & \text { to } \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & \text { to } \\ & 69 \end{aligned}$	70 to 74	$\begin{aligned} & 75 \\ & \text { to } \\ & > \end{aligned}$
0	3	21	141	488	360	128	27	14	6	5	3	1	0	5

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 638 which represents 53 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 488 which represents 41 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 44 which represents 4 percent of the total classified vehicles. The number of Tractor Trailers in the study was 31 which represents 3 percent of the total classified vehicles.

CHART 2

HEADWAY

During the peak traffic period, on 09/15/2022 at [08:00 AM-08:15 AM] the average headway between vehicles was 18.75 seconds. During the slowest traffic period, on 09/15/2022 at [11:30 PM-11:45 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 61.00 and 100.00 degrees F.

MH Corbin Traffic Analyzer Study Computer Generated Summary Report City: Cheyenne
Street: Van Buren Ave
Location: North of Laramie St

A study of vehicle traffic was conducted with the device having serial number 404061. The study was done in the Northbound lane at Van Buren Ave in Cheyenne, WY in Laramie county. The study began on 09/15/2022 at 12:00 AM and concluded on 09/16/2022 at 12:00 AM, lasting a total of 24.00 hours. Traffic statistics were recorded in 15 minute time periods. The total recorded volume showed 1,098 vehicles passed through the location with a peak volume of 39 on 09/15/2022 at [03:15 PM-03:30 PM] and a minimum volume of 0 on 09/15/2022 at [11:15 PM-11:30 PM]. The AADT count for this study was 1,098 .

SPEED

Chart 1 lists the values of the speed bins and the total traffic volume for each bin. At least half the vehicles were traveling in the 25-30 MPH range or lower. The average speed for all classifed vehicles was 28 MPH with 7.31% vehicles exceeding the posted speed of $30 \mathrm{MPH} .0 .74 \%$ percent of the total vehicles were traveling in excess of 55 MPH . The mode speed for this traffic study was 25 MPH and the 85 th percentile was 33.07 MPH .

<	10	15	20	25	30	35	40	45	50	55	60	65	70	75
to														
9	14	19	24	29	34	39	44	49	54	59	64	69	74	>
0	2	25	230	527	218	36	16	10	2	7	1	4	2	1

CHART 1

CLASSIFICATION

Chart 2 lists the values of the classification bins and the total traffic volume accumulated for each bin. Most of the vehicles classified during the study were Passenger Vehicles. The number of Passenger Vehicles in the study was 603 which represents 56 percent of the total classified vehicles. The number of Vans \& Pickups in the study was 414 which represents 38 percent of the total classified vehicles. The number of Busses \& Trucks in the study was 33 which represents 3 percent of the total classified vehicles. The number of Tractor Trailers in the study was 31 which represents 3 percent of the total classified vehicles.

CHART 2

HEADWAY

During the peak traffic period, on 09/15/2022 at [03:15 PM-03:30 PM] the average headway between vehicles was 22.5 seconds. During the slowest traffic period, on 09/15/2022 at [11:15 PM-11:30 PM] the average headway between vehicles was 900 seconds.

WEATHER

The roadway surface temperature over the period of the study varied between 59.00 and 100.00 degrees F.

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 22 / 2023$
Analysis Year	2022
Time Analyzed	2022 AM Peak
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Dell Range Blvd and Van Buren Ave
Jurisdiction	
East/West Street	Dell Range Blvd
North/South Street	Van Buren Ave
Peak Hour Factor	0.90
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		15	207	48		17	532	5		52	6	5		0	9	27
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 22 / 2023$
Analysis Year	2022
Time Analyzed	2022 PM Peak
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Dell Range Blvd and Van Buren Ave
Jurisdiction	
East/West Street	Dell Range Blvd
North/South Street	Van Buren Ave
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		13	482	47		8	401	3		39	9	13		1	3	15
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 22 / 2023$
Analysis Year	2025
Time Analyzed	2025 AM Peak
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Dell Range Blvd and Van Buren Ave
Jurisdiction	
East/West Street	Dell Range Blvd
North/South Street	Van Buren Ave
Peak Hour Factor	0.90
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		17	225	48		21	575	7		55	8	7		0	12	32
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Dell Range Blvd and Van Buren Ave
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 22 / 2023$	East/West Street	Dell Range Blvd
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		15	519	49		11	433	4		39	12	16		1	4	18
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 22 / 2023$
Analysis Year	2045
Time Analyzed	2045 AM Peak
Intersection Orientation	East-West
Project Description	

Site Information

Intersection	Dell Range Blvd and Van Buren Ave
Jurisdiction	
East/West Street	Dell Range Blvd
North/South Street	Van Buren Ave
Peak Hour Factor	0.90
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		41	391	37		59	942	59		62	46	28		1	73	119
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Dell Range Blvd and Van Buren Ave
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 22 / 2023$	East/West Street	Dell Range Blvd
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		38	852	51		42	706	40		30	53	49		17	30	54
Percent Heavy Vehicles (\%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Liberty St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	
Analysis Year	2022	North/South Street	Liberty St
Time Analyzed	2022 AM Peak	Peak Hour Factor	0.81
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR					TR		LT			
Volume (veh/h)						16		3			69	1		1	85		
Percent Heavy Vehicles (\%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (\%)	0																
Right Turn Channelized																	
Median Type \\| Storage	Undivided																
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2						4.1			
Critical Headway (sec)						6.43		6.23						4.13			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Liberty St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Liberty St
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						9		7			76	15		9	61	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Liberty St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Liberty St
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 AM Peak	Peak Hour Factor	0.81
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						16		3			76	1		1	94	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Liberty St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	
Analysis Year	2025	North/South Street	Liberty St
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR					TR		LT			
Volume (veh/h)						9		7			85	15		9	69		
Percent Heavy Vehicles (\%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (\%)					0												
Right Turn Channelized																	
Median Type \\| Storage	Undivided																
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2						4.1			
Critical Headway (sec)						6.43		6.23						4.13			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2045
Time Analyzed	2045 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Liberty St		
Jurisdiction			
East/West Street	Liberty St		
North/South Street	Van Buren Ave		
Peak Hour Factor	0.81		
Analysis Time Period (hrs)	0.25		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						17		2			151	1		1	186	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Liberty St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	
Analysis Year	2045	North/South Street	Liberty St
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR					TR		LT			
Volume (veh/h)						10		6			180	17		8	145		
Percent Heavy Vehicles (\%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (\%)	0																
Right Turn Channelized																	
Median Type \\| Storage	Undivided																
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2						4.1			
Critical Headway (sec)						6.43		6.23						4.13			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2022
Time Analyzed	2022 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Green River St
Jurisdiction	
East/West Street	Green River St
North/South Street	Van Buren Ave
Peak Hour Factor	0.73
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		38	1	54		6	1	2		51	29	4		2	42	63
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2022
Time Analyzed	2022 PM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Green River St
Jurisdiction	
East/West Street	Green River St
North/South Street	Van Buren Ave
Peak Hour Factor	0.71
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		37	6	60		4	1	2		54	55	2		3	52	27
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2025
Time Analyzed	2025 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Intersection	Van Buren Ave and Green River St
Jurisdiction	
East/West Street	Green River St
North/South Street	Van Buren Ave
Peak Hour Factor	0.73
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		39	1	54		6	1	2		51	36	4		2	52	65
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2025
Time Analyzed	2025 PM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Green River St
Jurisdiction	
East/West Street	Green River St
North/South Street	Van Buren Ave
Peak Hour Factor	0.71
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		61	6	37		4	1	2		54	64	2		3	60	27
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2045
Time Analyzed	2045 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Green River St
Jurisdiction	
East/West Street	Green River St
North/South Street	Van Buren Ave
Peak Hour Factor	0.73
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		49	0	49		6	0	3		48	107	4		3	149	80
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Green River St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Green River St
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.71
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^0]| HCS Roundabouts Report | | | |
| :---: | :---: | :---: | :---: |
| General Information | | Site Information | |
| Analyst | Elizabeth Landry | Intersection | Van Buren Ave and Green Ri... |
| Agency or Co. | Y2 Consultants | E/W Street Name | Green River St |
| Date Performed | 5/18/2023 | N/S Street Name | Van Buren Ave |
| Analysis Year | 2022 | Analysis Time Period, hrs | 0.25 |
| Time Analyzed | 2022 AM Peak | Peak Hour Factor | 0.73 |
| Project Description | Van Buren Corridor | Jurisdiction | |

Volume Adjustments and Site Characteristics

Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment																
Volume (V), veh/h	0	38	1	54	0	6	1	2	0	51	29	4	0	2	42	63
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	54	1	76	0	8	1	3	0	72	41	6	0	3	59	89
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow ($\mathrm{ve}_{\text {e }}$, pc/h		131			12			119			151	
Entry Volume, veh/h		127			12			116			147	
Circulating Flow (v_{c}, pc / h	70			167			58			81		
Exiting Flow (Vex), pc/h	10			162			98			143		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1285			1164			1301			1271	
Capacity (c), veh/h		1247			1130			1263			1234	
v/c Ratio (x)		0.10			0.01			0.09			0.12	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.7			3.3			3.6			3.9	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.3			0.0			0.3			0.4	
Approach Delay, s/veh \| LOS	3.7		A	3.3		A	3.6		A	3.9		A
Intersection Delay, s/veh \| LOS	3.7						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	Elizabeth Landry								Intersection				Van Buren Ave and Green Ri...			
Agency or Co.	Y2 Consultants								E/W Street Name				Green River St			
Date Performed	5/18/2023								N/S Street Name				Van Buren Ave			
Analysis Year	2022								Analysis Time Period, hrs				0.25			
Time Analyzed	2022 PM Peak								Peak Hour Factor				0.71			
Project Description	Van Buren Corridor								Jurisdiction							
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR				LTR			
Volume (V), veh/h	0	37	6	60	0	4	1	2	0	54	55	2	0	3	52	27
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	54	9	87	0	6	1	3	0	78	80	3	0	4	75	39
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		150			10			161			118	
Entry Volume, veh/h		146			10			156			115	
Circulating Flow (vc), pc/h	85			212			67			85		
Exiting Flow (Vex), pc/h	16			118			137			168		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1265			1112			1289			1265	
Capacity (c), veh/h		1229			1079			1251			1229	
v/c Ratio (x)		0.12			0.01			0.12			0.09	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.9			3.4			3.9			3.7	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.4			0.0			0.4			0.3	
Approach Delay, s/veh \| LOS	3.9	A		3.4		A	3.9		A	3.7		A
Intersection Delay, s/veh \| LOS	3.8						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	Elizabeth Landry								Intersection				Van Buren Ave and Green Ri...			
Agency or Co.	Y2 Consultants								E/W Street Name				Green River St			
Date Performed	5/18/2023								N/S Street Name				Van Buren Ave			
Analysis Year	2025								Analysis Time Period, hrs				0.25			
Time Analyzed	2025 AM Peak								Peak Hour Factor				0.73			
Project Description	Van Buren Corridor								Jurisdiction							
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			LTR				LTR		LTR				LTR			
Volume (V), veh/h	0	39	1	54	0	6	1	2	0	51	36	4	0	2	52	65
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	55	1	76	0	8	1	3	0	72	51	6	0	3	73	92
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		132			12			129			168	
Entry Volume, veh/h		128			12			125			163	
Circulating Flow (vc), pc/h	84			178			59			81		
Exiting Flow (Vex), pc/h	10			165			109			157		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1267			1151			1299			1271	
Capacity (c), veh/h		1230			1117			1262			1234	
v/c Ratio (x)		0.10			0.01			0.10			0.13	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.8			3.3			3.7			4.0	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.3			0.0			0.3			0.5	
Approach Delay, s/veh \| LOS	3.8	A		3.3		A	3.7		A	4.0		A
Intersection Delay, s/veh \| LOS	3.8						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	Elizabeth Landry								Intersection				Van Buren Ave and Green Ri...			
Agency or Co.	Y2 Consultants								E/W Street Name				Green River St			
Date Performed	5/18/2023								N/S Street Name				Van Buren Ave			
Analysis Year	2025								Analysis Time Period, hrs				0.25			
Time Analyzed	2025 PM Peak								Peak Hour Factor				0.71			
Project Description	Van Buren Corridor								Jurisdiction							
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			LTR				LTR		LTR				LTR			
Volume (V), veh/h	0	37	6	61	0	4	1	2	0	54	64	2	0	3	60	27
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	54	9	88	0	6	1	3	0	78	93	3	0	4	87	39
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		151			10			174			130	
Entry Volume, veh/h		147			10			169			126	
Circulating Flow (v_{c}, pc / h	97			225			67			85		
Exiting Flow (Vex), pc/h	16			118			150			181		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1250			1097			1289			1265	
Capacity (c), veh/h		1214			1065			1251			1229	
v/c Ratio (x)		0.12			0.01			0.14			0.10	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		4.0			3.5			4.0			3.8	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.4			0.0			0.5			0.3	
Approach Delay, s/veh \| LOS	4.0	A		3.5		A	4.0		A	3.8		A
Intersection Delay, s/veh \| LOS	3.9						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	Elizabeth Landry								Intersection				Van Buren Ave and Green Ri...			
Agency or Co.	Y2 Consultants								E/W Street Name				Green River St			
Date Performed	5/18/2023								N/S Street Name				Van Buren Ave			
Analysis Year	2045								Analysis Time Period, hrs				0.25			
Time Analyzed	2045 AM Peak								Peak Hour Factor				0.73			
Project Description	Van Buren Corridor								Jurisdiction							
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR				LTR			
Volume (V), veh/h	0	49	0	49	0	6	0	3	0	48	107	4	0	3	149	80
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	69	0	69	0	8	0	4	0	68	151	6	0	4	210	113
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		138			12			225			327	
Entry Volume, veh/h		134			12			218			317	
Circulating Flow (vc), pc/h	222			288			73			76		
Exiting Flow (Vex), pc/h	10			181			224			287		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1100			1029			1281			1277	
Capacity (c), veh/h		1068			999			1244			1240	
v/c Ratio (x)		0.13			0.01			0.18			0.26	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		4.5			3.7			4.4			5.2	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.4			0.0			0.6			1.0	
Approach Delay, s/veh \| LOS	4.5	A		3.7		A	4.4		A	5.2		A
Intersection Delay, s/veh \| LOS	4.8						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	Elizabeth Landry								Intersection				Van Buren Ave and Green Ri...			
Agency or Co.	Y2 Consultants								E/W Street Name				Green River St			
Date Performed	5/18/2023								N/S Street Name				Van Buren Ave			
Analysis Year	2045								Analysis Time Period, hrs				0.25			
Time Analyzed	2045 PM Peak								Peak Hour Factor				0.71			
Project Description	Van Buren Corridor								Jurisdiction							
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR				LTR			
Volume (V), veh/h	0	43	3	64	0	4	0	2	0	55	152	3	0	5	143	30
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	62	4	93	0	6	0	3	0	80	221	4	0	7	207	44
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		159			9			305			258	
Entry Volume, veh/h		154			9			296			250	
Circulating Flow (vc), pc/h	220			363			73			86		
Exiting Flow (Vex), pc/h	15			124			286			306		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1103			953			1281			1264	
Capacity (c), veh/h		1071			925			1244			1227	
v/c Ratio (x)		0.14			0.01			0.24			0.20	

Delay and Level of Service

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		4.6			4.0			5.0			4.7	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.5			0.0			0.9			0.8	
Approach Delay, s/veh \| LOS	4.6	A		4.0		A	5.0		A	4.7		A
Intersection Delay, s/veh \| LOS	4.8						A					

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2022
Time Analyzed	2022 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Rock Springs St
Jurisdiction	
East/West Street	Rock Springs St
North/South Street	Van Buren Ave
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		1		28						10	87				100	2
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rock Springs St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Rock Springs St
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		2		19						23	115				103	6
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2025
Time Analyzed	2025 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Rock Springs St
Jurisdiction	
East/West Street	Rock Springs St
North/South Street	Van Buren Ave
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rock Springs St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Rock Springs St
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2045
Time Analyzed	2045 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Rock Springs St
Jurisdiction	
East/West Street	Rock Springs St
North/South Street	Van Buren Ave
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		0		31						13	170				192	1
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rock Springs St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Rock Springs St
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.75
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		1		22						30	230				203	3
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2022
Time Analyzed	2022 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Eastview St
Jurisdiction	
East/West Street	Eastview St
North/South Street	Van Buren Ave
Peak Hour Factor	0.87
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						21		20			77	10		10	119	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Eastview St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	
Analysis Year	2022	North/South Street	Eastview St
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR					TR		LT			
Volume (veh/h)						10		11			128	16		12	109		
Percent Heavy Vehicles (\%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (\%)	0																
Right Turn Channelized																	
Median Type \\| Storage	Undivided																
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2						4.1			
Critical Headway (sec)						6.43		6.23						4.13			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 18 / 2023$
Analysis Year	2025
Time Analyzed	2025 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Eastview St
Jurisdiction	
East/West Street	Eastview St
North/South Street	Van Buren Ave
Peak Hour Factor	0.87
Analysis Time Period (hrs)	0.25

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						21		20			85	10		10	130	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Eastview St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Eastview St
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						10		11			140	16		12	119	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Eastview St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Eastview St
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 AM Peak	Peak Hour Factor	0.87
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						20		21			155	9		10	234	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Eastview St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 18 / 2023$	East/West Street	Eastview St
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						10		11			255	17		12	217	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Rawlins St
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 AM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		3		8						3	84				132	8
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Rawlins St
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		5		7						7	127				124	4
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Rawlins St
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 AM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume (veh/h)		5		6						2	88				142	10
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Rawlins St
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Rawlins St
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 AM Peak	Peak Hour Factor	0.79
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Rawlins St
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	
Analysis Year	2045	North/South Street	Rawlins St
Time Analyzed	2045 PM Peak	Peak Hour Factor	0.76
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Carter Rd
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 AM Peak	Peak Hour Factor	0.80
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						1		1			1	1		0	141	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Carter Rd
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		0			133	2		2	131	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Carter Rd
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 AM Peak	Peak Hour Factor	0.80
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR					TR		LT			
Volume (veh/h)						1		1			1	1		0	146		
Percent Heavy Vehicles (\%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (\%)	0																
Right Turn Channelized																	
Median Type \\| Storage	Undivided																
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2						4.1			
Critical Headway (sec)						6.43		6.23						4.13			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Carter Rd
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.77
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		0			138	2		2	135	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	Carter Rd
Analysis Year	2045	North/South Street	Van Buren Ave
Time Analyzed	2045 AM Peak	Peak Hour Factor	0.80
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						1		1			2	1		0	181	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information		Elizabeth Landry	Site Information
Analyst	Y2 Consultants	Intersection	Van Buren Ave and Carter Rd
Agency/Co.	$5 / 19 / 2023$	Jurisdiction	
Date Performed	2045	East/West Street	Carter Rd
Analysis Year	2045 PM Peak	North/South Street	Van Buren Ave
Time Analyzed	North-South	Peak Hour Factor	0.77
Intersection Orientation	Van Buren Corridor	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR					TR		LT		
Volume (veh/h)						0		0			172	2		2	169	
Percent Heavy Vehicles (\%)						3		3						3		
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	
Agency/Co.	Y2 Consultants	
Date Performed	$5 / 19 / 2023$	
Analysis Year	2022	
Time Analyzed	2022 AM Peak	
Intersection Orientation	North-South	Van Buren Corridor
Project Description	Par	

Site Information

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		0	0	2		0	0	0		1	101	0		0	139	1
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 19 / 2023$
Analysis Year	2022
Time Analyzed	2022 PM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		2	0	2		0	0	0		1	148	0		0	117	3
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 19 / 2023$
Analysis Year	2025
Time Analyzed	2025 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		0	0	2		0	0	0		1	104	0		0	144	1
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 19 / 2023$
Analysis Year	2025
Time Analyzed	2025 PM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		2	0	2		0	0	0		1	153	0		0	121	3
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 19 / 2023$
Analysis Year	2045
Time Analyzed	2045 AM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		1	0	5		0	0	0		2	129	0		0	178	3
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry
Agency/Co.	Y2 Consultants
Date Performed	$5 / 19 / 2023$
Analysis Year	2045
Time Analyzed	2045 PM Peak
Intersection Orientation	North-South
Project Description	Van Buren Corridor

Site Information

Intersection	Van Buren Ave and Laramie St
Jurisdiction	
East/West Street	Laramie St
North/South Street	Van Buren Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR													
Volume (veh/h)		5	0	5		0	0	0		3	189	0		0	148	7
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

General Information		Site Information	
Analyst	Elizabeth Landry	Intersection	Van Buren Ave and US-30
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	US-30 (Lincolnway)
Analysis Year	2022	North/South Street	Van Buren Ave
Time Analyzed	2022 AM Peak	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		LT	T				T	TR							LR	
Volume (veh/h)		45	241				705	17						4		122
Percent Heavy Vehicles (\%)		3												3		3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and US-30
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	
Analysis Year	2022	North/South Street	Van Buren Ave (Lincolnway)
Time Analyzed	2022 PM Peak	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		LT	T				T	TR							LR	
Volume (veh/h)		142	672				376	6						7		71
Percent Heavy Vehicles (\%)		3												3		3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	146													80	
Capacity, c (veh/h)	1154													706	
v/c Ratio	0.13													0.11	
95\% Queue Length, Q_{95} (veh)	0.4													0.4	
Control Delay (s/veh)	8.6	0.9												10.8	
Level of Service (LOS)	A	A												B	
Approach Delay (s/veh)	2.3											10.8			
Approach LOS	A											B			

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and US-30
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	US-30 (Lincolnway)
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 AM Peak	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Major Street: East-West
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		LT	T				T	TR							LR	
Volume (veh/h)		49	252				737	15						3		127
Percent Heavy Vehicles (\%)		3												3		3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and US-30
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	US-30 (Lincolnway)
Analysis Year	2025	North/South Street	Van Buren Ave
Time Analyzed	2025 PM Peak	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		LT	T				T	TR							LR	
Volume (veh/h)		149	707				393	5						6		75
Percent Heavy Vehicles (\%)		3												3		3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33

Delay, Queue Length, and Level of Service

General Information

Analyst	Elizabeth Landry	Intersection	Van Buren Ave and US-30
Agency/Co.	Y2 Consultants	Jurisdiction	
Date Performed	$5 / 19 / 2023$	East/West Street	
Analysis Year	2045	North/South Street	VS-30 (Lincolnway)
Time Analyzed	2045 AM Peak	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Van Buren Corridor		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		LT	T				T	TR							LR		
Volume (veh/h)		77	346				980	5						1		161	
Percent Heavy Vehicles (\%)		3												3		3	
Proportion Time Blocked																	
Percent Grade (\%)																	
Right Turn Channelized																	
Median Type \\| Storage	Left Only								1								
Critical and Follow-up Headways																	
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	82													172	
Capacity, c (veh/h)	654													492	
v / c Ratio	0.13													0.35	
95\% Queue Length, Q_{95} (veh)	0.4													1.6	
Control Delay (s/veh)	11.3	1.1												16.2	
Level of Service (LOS)	B	A												C	
Approach Delay (s/veh)	2.9											16.2			
Approach LOS	A											C			

General Information

Analyst	Elizabeth Landry	
Agency/Co.	Y2 Consultants	
Date Performed	$5 / 19 / 2023$	
Analysis Year	2045	
Time Analyzed	2045 PM Peak	
Intersection Orientation	East-West	Van Buren Corridor
Project Description		

Site Information

Intersection	Van Buren Ave and US-30
Jurisdiction	
East/West Street	US-30 (Lincolnway)
North/South Street	Van Buren Ave
Peak Hour Factor	0.97
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		LT	T				T	TR							LR	
Volume (veh/h)		204	1000				520	1						1		99
Percent Heavy Vehicles (\%)		3												3		3
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	210													103	
Capacity, c (veh/h)	1020													706	
v/c Ratio	0.21													0.15	
95\% Queue Length, Q_{95} (veh)	0.8													0.5	
Control Delay (s/veh)	9.4	1.9												11.0	
Level of Service (LOS)	A	A												B	
Approach Delay (s/veh)	3.2											11.0			
Approach LOS	A											B			

APPENDIX F - UTILITY LOCATE INFORMATION FROM UCS

CHEYعN× Underground Consulting Solutions
Private/Engincering Facility Location Sketch
Work Address VAN BUREN \& DEIRANGE Compact Name ED WADDE\|
Contractor name WESTERN RED Contact Phone 1 307-632-5656
Billing Address $O N$ file
POH/Billing Ref: \qquad

Utility depletion conforms to ASCE $\mathbf{3 8 - 0 2}$ Utility Quality Level B using appropriate surface geophyural methods and interpretation Add trona' utility information obtained as available for bert representation. UCS is not liable for unity data that cannot be found, is unknown, or unlocateable, improper or unregulated underground unity construction practices which rounder seactitectmiques or lack of full data by utility owners which may cause an incomplete representation.
Rescript of Utile Locating Depiction

CHEYعN× Underground Consulting Solutions
Private/Engincering Facility Location Sketch
Work Address VAN BUREN \& DEIRANGE Compact Name ED WADDE\|
Contractor name WESTERN RED Contact Phone 1 307-632-5656
Billing Address $O N$ file
POH/Billing Ref: \qquad

Utility depletion conforms to ASCE $\mathbf{3 8 - 0 2}$ Utility Quality Level B using appropriate surface geophyural methods and interpretation Add trona' utility information obtained as available for bert representation. UCS is not liable for unity data that cannot be found, is unknown, or unlocateable, improper or unregulated underground unity construction practices which rounder seactitectmiques or lack of full data by utility owners which may cause an incomplete representation.
Rescript of Utile Locating Depiction

RE: Van Buren Avenue Project Utility Locates

"Ed Waddell" [Ed@y2consultants.com]
Sent: 11/29/2022 10:57 AM
To: ""UCS"" ucs@dontdigwithoutucs.com, ""Ken Goff"" Ken.goff@dontdigwithoutucs.com
Cc: ""Adrienne Lemmers"" adrienne@y2consultants.com, ""Maxwell Waite"" mwaite@y2consultants.com, ""Liberty Blain"" Liberty@y2consultants.com

Hi Ken / UCS:

- We'd like to coordinate our surveyors' work with your locates along Van Buren Avenue.
- Do you know when UCS will be out there?
- Ed

From: Ed Waddell

Sent: Tuesday, November 8, 2022 11:01 AM
To: UCS ucs@dontdigwithoutucs.com; Ken Goff Ken.goff@dontdigwithoutucs.com
Cc: Adrienne Lemmers adrienne@y2consultants.com; Maxwell Waite mwaite@y2consultants.com; Liberty Blain Liberty@y2consultants.com
Subject: RE: Van Buren Avenue Project Utility Locates

Hi Ken:

- We received the go-ahead on this project and would like to coordinate with our surveyors schedule so they can record your locates.
- What is UCS' availability over the next few weeks?
- Ed

From: UCS ucs@dontdigwithoutucs.com
Sent: Monday, July 25, 2022 3:59 PM
To: Ed Waddell Ed@y2consultants.com; Ken Goff Ken.goff@dontdigwithoutucs.com
Subject: RE: Cost estimate: needed

Ed,
This will be 20 hours, $\$ 2000.00$. Please feel free to call with any questions. Thanks.

Kenneth Goff

Director of Operations

Underground Consulting Solutions
5778 Kelly Avenue
Littleton, Colorado 80125
0303.904 .7422

F 720.554 .7889
C 303.523 .8473
DBE/WBE/EBE/SBE/Level 1 ESB Certification
Utility Locators - Private - Engineering | Potholing/Hydro-Excavation | High Accuracy Utility Mapping

```
--------- Original Message---------
Subject: Cost estimate: needed
From: "Ed Waddell" <Ed@y2consultants.com>
Date: 7/25/22 2:08 pm
To: "UCS" <ucs@dontdigwithoutucs.com>, "Ken Goff" <Ken.goff@dontdigwithoutucs.com>
Hi Ken:
```

- I hope this finds all the folks at UCS happy and healthy.
- I need your estimate to locate buried dry utilities within 100^{\prime} of centerline for 0.65 miles of Van Buren Avenue, between Dell Range Boulevard and US-30 (Lincolnway). Here's a map:

Thanks,

- Ed

Ed Waddell, MUP
Community \& Transportation Planner
Ed@Y2consultants.com
Y2 Consultants, LLC
1725 Carey Avenue
Cheyenne, WY 82001-4419
(307) 632-5656 / Fax (307) 635-0410

Electronic files that may be attached to this letter, transmittal, or electronic mail transmission are provided as a convenience to the recipient and are instruments of service prepared solely for use with a single project. By using electronic files, you agree to waive all claims and liability against Western Research and Development and its subconsultants resulting from your failure to comply with the conditions indicated herein. Western Research and Development retains all rights, including the copyright. Electronic files are not to be construed as products, and no warranties are express or implied. Western Research and Development considers that design or survey data is only in its final form when issued on paper-copied, plotted, stamped and signed drawings, plats, and reports. If any differences exist between printed documents and these electronic documents, the printed documents shall be presumed to be correct, and it is the recipient's

Ticket No: 20224800831

Excavator Details

Caller Id:	9778
Contact:	Kenneth Goff
Company:	Underground Consulting Solutions

Dig Site and Ticket Details

This is a design ticket. Please send all utility mapping to ucs@totalspeed.net. Loc from on Van Buren ROW to ROW from Dell Range south to Lincoln Hwy. Access is open.

Ticket Medium	Web
Ticket Status	Original
Ticket Type	Planning \& Design
Previous Ticket No.	Not Supplied
User Reference	Client
Ticket Date (MTZ)	2022/11/30 11:30 AM
Work Start Date (MTZ)	2022/12/02 11:30 AM
Work Expire Date (MTZ)	2022/12/22 11:30 AM
Address	Van Buren Ave Cheyenne 82001
Nearest Cross Street	Dell Range Blvd
Type of work	Construction
Activity	Expose \& Survey
Excavation Method	Mechanical Excavation
Excavation Depth	>48 in
Public Property	Public Property
Private Property	None
Onsite Contact	Ken Goff
Onsite Phone	303-904-7422
Municipality	Not Supplied
Nearest Community	Not Supplied
Rural Subdivision	Not Supplied

Your Responsibilities

- Do not proceed with any excavation until all notified asset owners have responded by providing clearance, OR by identifying the location of their facilities with maps OR by placing locate marks on the ground.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using the OneCall of Wyoming service, you agree to our privacy policy and the terms and conditions set out at on our web site.
- For more information, visit www.onecallofwyoming.com

Utility Owner Details

The public utility owners listed below with a Status of "Notification Sent" have been requested to respond to your request. They may contact you directly for clarification of your request details.

Station Code	Authority Name	Phone	Status
CLF	BLACK HILLS ELECTRIC (CLF)	3077782165	Notification Sent
WYG	Black Hills Gas	3077782161	Notification Sent
BLP	Bluepeak (BLP)	$307-214-6949$	Notification Sent
QL1	CENTURYLINK (QL1)	$877-366-8344$	Notification Sent
TI4	CHARTER COMMUNICATIONS (TI4)	$307-632-8114$	Notification Sent
CCD	CHEYENNE CITY DEPARTMENT OF PUBLIC WORKS (CCD)	$307-637-6288$	Notification Sent
CBP	CHEYENNE WATER DEPARTMENT (CBP)	3076370852	Notification Sent

Time: 11/30/2022 11:41:49 AM
Session: D:\Utility Maps and Info back up programs\Richs st\Black Hills\NE-SD-WY\Joint Use Inventory BHP-CLFP.gtm

Black Hills Corporation Mobile GIS

Black Hills Corporation hereby disclaims any warranty, express or implied with regard to the accuracy or usefulness of Mobile GIS and its associated maps and records. Distribution of County Parcel Data outside of Black Hills Corporation is a
violation of Black Hills Corporation's data sharing agreement.
[Extract dates] BHC: 03/31/2013, Pennington: 03/17/2010, Meade: 01/30/2009, Lawrence: 12/10/2009, Fall River: 06/30/2009, Custer 4/12/201

Time: 11/30/2022 11:42:10 AM
Session: D:\Utility Maps and Info back up programs\Richs stlBlack Hills\NE-SD-WY\Joint Use Inventory BHP-CLFP.gtm

Black Hills Corporation Mobile GIS

Black Hills Corporation hereby disclaims any warranty, express or implied with regard to the accuracy or usefulness of Mobile GIS and its associated maps and records. Distribution of County Parcel Data outside of Black Hills Corporation is a
violation of Black Hills Corporation's data sharing agreement.
[Extract dates] BHC: 03/31/2013, Pennington: 03/17/2010, Meade: 01/30/2009, Lawrence: 12/10/2009, Fall River: 06/30/2009, Custer 4/12/201

Time: 11/30/2022 11:42:39 AM
Session: D:\Utility Maps and Info back up programs\Richs st\Black HillsLNE-SD-WY\Joint Use Inventory BHP-CLFP.gtm

Black Hills Corporation Mobile GIS

Black Hills Corporation hereby disclaims any warranty, express or implied with regard to the accuracy or usefulness of Mobile GIS and its associated maps and records. Distribution of County Parcel Data outside of Black Hills Corporation is a
violation of Black Hills Corporation's data sharing agreement.
[Extract dates] BHC: 03/31/2013, Pennington: 03/17/2010, Meade: 01/30/2009, Lawrence: 12/10/2009, Fall River: 06/30/2009, Custer 4/12/201,

Time: 11/30/2022 11:42:56 AM
Session: D:\Utility Maps and Info back up programs\Richs st\Black HillsLNE-SD-WY\Joint Use Inventory BHP-CLFP.gtm

Black Hills Corporation Mobile GIS

Black Hills Corporation hereby disclaims any warranty, express or implied with regard to the accuracy or usefulness of Mobile GIS and its associated maps and records. Distribution of County Parcel Data outside of Black Hills Corporation is a
violation of Black Hills Corporation's data sharing agreement.
[Extract dates] BHC: 03/31/2013, Pennington: 03/17/2010, Meade: 01/30/2009, Lawrence: 12/10/2009, Fall River: 06/30/2009, Custer 4/12/201

Printed by cocdrom at 11:48:52 on 22/Nov/2022 for WC CLLI: CHYNWYMA Data current as of 30/Oct/2013

Printed by cocdrom at 11:48:57 on 22/Nov/2022 for WC CLLI: CHYNWYMA Data current as of 30/Oct/2013

City Info v3

Subject: Water and sanitation sewer ticket \# 20224800831
From: Jessica Hanson j2g2hanson@yahoo.com
Date: Wed, Nov 30, 2022 8:24 pm
To: "ucs@totalspeed.net" ucs@totalspeed.net
Attach: 20221130_202005.jpg
20221130_201957.jpg
20221130_201846.jpg
20221130_201814.jpg
20221130_201722.jpg
Please see the attached. If you have any questions please call Steve or Jessica at 307-630-1010.

Open in Map Viewer Cl

rer/index.html?webmap=2e31b0692e5243e085c7c2d18974db3b

Open in Map Viewer Classic

Subject: Water and sanitation sewer ticket \# 20224800831
From: Jessica Hanson j2g2hanson@yahoo.com
Date: Wed, Nov 30, 2022 8:24 pm
To: "ucs@totalspeed.net" ucs@totalspeed.net
Attach: 20221130_202005.jpg
20221130_201957.jpg
20221130_201846.jpg
20221130_201814.jpg
20221130_201722.jpg
Please see the attached. If you have any questions please call Steve or Jessica at 307-630-1010.

Open in Map Viewer Cl

rer/index.html?webmap=2e31b0692e5243e085c7c2d18974db3b

Open in Map Viewer Classic

APPENDIX G - COST ESTIMATES

ROW Cost Estimate

Street/Legal Address	2022 Value	Lot Size (ft^{2})	Value Per Square Foot (\$)	Estimated Cost for Land $\left(\$ / \mathrm{ft}^{2}\right)$	Land Req'd for 70' ROW (ft^{2})	$\begin{aligned} & \text { Price fo 70' } \\ & \text { ROW (\$) } \end{aligned}$	Land Req'd for 80' ROW (ft^{2})	Price fo 80' ROW (\$)
4120 Van Buren Ave	\$411,327	26835	\$15.33	\$16.00	1506.05	\$24,096.80	3328.53	\$53,256.48
4101 Dildine Road	\$178,033	43512	\$4.09	\$6.00	1357.85	\$8,147.10	2812.89	\$16,877.34
Sunny Side Addition, 7th Filing: East 156' of the North 78' of the South 268 of Tract 320	\$40,808	12168	\$3.35	\$5.00	784.61	\$3,923.05	1563.92	\$7,819.60
Sunny Side Addition, 7th Filing: South 190' of Tract 320	\$414,643	56192	\$7.38	\$9.00	2079.97	\$18,719.73	3978.39	\$35,805.51
Sunny Side Addition, 7th Filing: East 197.32' of the North 102' of the South 268 of Tract 321	\$15,938	20127	\$0.79	\$6.00	126.49	\$758.94	248.13	\$1,488.78
3904 Van Buren Ave	\$339,534	25872	\$13.12	\$15.00	1722.49	\$25,837.35	3042.32	\$45,634.80
3902 Van Buren Ave	\$3,720	1875	\$1.98	\$6.00	202.78	\$1,216.68	352.65	\$2,115.90
3818 Van Buren Ave	\$205,491	14625	\$14.05	\$16.00	1632.06	\$26,112.96	2801.02	\$44,816.32
3814 Van Buren Ave	\$207,305	38333	\$5.41	\$8.00	1921.42	\$15,371.36	3222.47	\$25,779.76
3808 Van Buren Ave	\$163,145	29600	\$5.51	\$8.00	1549.97	\$12,399.76	2551.29	\$20,410.32
3608 Van Buren Ave	\$79,221	177725	\$0.45	\$6.00	9777.22	\$58,663.32	15778.53	\$94,671.18
258 Laramie St	\$17,093	36155	\$0.47	\$6.00	919.73	\$5,518.38	1538.99	\$9,233.94
Aver	ge, used as m	inimum cost=	\$6.00		23580.64	\$200,765.43	41219.13	\$357,909.93

VAN BUREN AVENUE

PLANNING COST ESTIMATE

Van Buren Avenue
Planning Cost Estimate

DESIGN FROM 35\% TO 100\%					
Item	Quantity	Unit	Unit Price	Total Cost	
Corridor Survey for Design	1	LS	12,274.94	\$	12,275
Engineering Design to 100\% Contract Documents	1	LS	29,459.87	\$	29,460
Permitting	1	LS	9,819.96	\$	9,820
Bid Assistance and Construction Inspection	1	LS	24,549.89	\$	24,550
			SUBTOTAL=	\$	76,105
GENERAL CONTRACT ITEMS					
Item	Quantity	Unit	Unit Price	Total Cost	
Mobilization, Demobilization and General Contract Requirements	1	LS	28,794.90	\$	28,795
Traffic Control	1	LS	1,439.75	\$	1,440
Stormwater Prevention Plan and Implementation	1	LS	4,319.24	\$	4,319
Contingency	1	LS	28,794.90	\$	28,795
SUBTOTAL= \$ 63,349					
STORMWATER IMPROVEMENTS					
Item	Quantity	Unit	Unit Price	Total Cost	
Type A Inlets	2	EA	7,500.00	\$	15,000
Stormwater Manholes (6' Diameter)	3	EA	8,500.00	\$	25,500
18" Stormwater Pipe	70	LF	90.00	\$	6,300
24" Stormwater Pipe	840	LF	110.00	\$	92,400
Riprap (Type VL)	1	CY	500.00	\$	500
SUBTOTAL= \$ 139,700					
MINI-ROUNDABOUT					
Item	Quantity	Unit	Unit Price	Total Cost	
ROW Acquisition	1	LS	25,000.00	\$	25,000
Remove Curb \& Gutter	700	LF	16.00	\$	11,200
Remove Existing Sidewalk	300	SY	20.00	\$	6,000
Remove Existing Asphalt	1800	SY	22.00	\$	39,600
Remove Existing Concrete Valley Pans	160	SY	30.00	\$	4,800
Remove Signs	3	EA	25.00	\$	75
Relocated Type A Inlets	2	EA	3,000.00	\$	6,000
Curb \& Gutter (24")	820	LF	90.00	\$	73,800
Concrete Flatwork	535	SY	125.00	\$	66,875
Asphalt (Hot Plant Mix)	325	Ton	70.00	\$	22,750
Striping	1340	LF	0.25	\$	335
Painted Markings	92	SF	2.00	\$	184
Thermoplastic Crosswalk \& Stop Bar Markings	235	SF	38.00	\$	8,930
Detectable Warning Plates	16	EA	250.00	\$	4,000
Luminaires	12	EA	1,200.00	\$	14,400
Signs	10	EA	400.00	\$	4,000
SUBTOTAL= \$ 287,949					
TOTAL ESTIMATED PROJECT COST= \$ 490,998					
2035 Estimate, 3\% Inflation				\$	700,045
				940,803	

Van Buren Avenue
Planning Cost Estimate

[^0]: Copyright © 2023 University of Florida. All Rights Reserved

